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DNSSEC
Recall: Name servers, when queried with a domain name, return 
an IP address record (signed by the zone owner), or report that 
no such domain name exists


Question: How to prove that an entry is missing, without 
revealing anything else?


NSEC: Have adjacent pairs (in sorted order of domain names) 
signed together. Return a pair flanking the queried name.


Reveals the adjacent domains. Allows zone enumeration.


NSEC3: Use H(domain-name) in this proof.


Still allows offline enumeration (domain names have low-
entropy)


A proposal: NSEC5



DNSSEC
NSEC5: Using “Verifiable Random Functions” (VRF)


VRF is a PRF, with an additional public-key


Here SK and PK generated honestly


Remains a pseudorandom function even given PK


SK allows one to give a proof that FSK(x) = y, without 
revealing (anything about) SK. Proof verified using a PK.


A sound proof system: A corrupt prover cannot generate 
a verifying proof for a pair (x,y) if FSK(x) ≠ y


A (non-interactive) Zero-Knowledge proof!


NSEC5 proposes a Random Oracle based VRF (assuming 
hardness of Discrete Log)



DNSSEC
Using a VRF to protect against zone-enumeration: Instead of 
H(domain name), use FSK(domain name)


For a missing entry for a query Q, return:

Y, and a VRF proof that FSK(Q) = Y

A pair of consecutive entries (Y1, Y2), signed by zone-owner, 
such that Y1 < Y < Y2


Adversary querying an honest name server can enumerate 
FSK(domain name), but that only reveals (an upper bound on) the 
total number of entries


Name server needs the VRF key SK (generated by the zone-owner) 
to compute FSK(Q) and the proof. But does not have access to the 
signing key.


A corrupt name server learns all entries, and can also refuse to 
answer queries, but it cannot give a wrong response



VRF

Original notion of a VRF by [MRV’99] requires security even for 
PK generated by the adversary


Constructions based on RSA, and later, “bilinear pairings”


When (SK,PK) generated by a trusted party, can be based on any 
general non-interactive zero-knowledge (NIZK) proof system


NSEC5 uses a VRF based on the discrete log assumption, but in 
the random oracle model


R.O. used for a proof-friendly PRF and the proof system 
itself



A PRF from RO
FSK(Q) = H(SK||Q) is a PRF if H is a random oracle (and SK long 
enough)


Why? Infeasible to guess SK correctly. Without querying H 
on prefix SK, FSK is identical to a truly random function.


But no PK for this F and no way to prove correct evaluation


Instead, let (SK,PK) = (y, Y=gy) and Fy(Q) = H(Cy), where C=H’(Q)


Still a PRF (remains infeasible to guess y from Y, under DLA)


Need a way to prove that FSK(Q) = z


Plan: Reveal D=Cy and prove that it is indeed Cy. But how? 

A ZK proof of equality of discrete logs for  (g,Y) and (C,D)


i.e., ∃y s.t. gy = Y and Cy = D



ZK Proof
Alice and Bob hold some data x. Bob wants to prove that it has 
some “property.”


Properties we are typically interested in are “NP properties”


An NP property is specified by a poly-time computable 
predicate R: x has the property ≡ ∃w s.t. R(x,w)=1


i.e., there’s a certificate to prove the property


Trivial proof for NP properties: send the certificate


Can a proof reveal nothing beyond the fact that x has the 
property?


Yes!


Will allow interactive proofs (for now)



ZK Proof
Consider an NP property specified by a predicate R:  
i.e., x has the property ≡ ∃w s.t. R(x,w)=1. A ZK proof protocol 
P⟷V has the following properties


Completeness: if ∃w R(x,w)=1, then Pr[P(x,w)⟷V(x) = 1] = 1


Soundness: if ∄w R(x,w)=1, then Pr[P*(x)⟷V(x) = 1] = negl 

(for any PPT P*)


A stronger notion: Proof of Knowledge


Zero-Knowledge: if ∃w R(x,w)=1, then view of the verifier in 
P(x,w)⟷V(x) can be (indistinguishably) simulated from x


This is called Honest Verifier ZK


Stronger property: For any PPT V*, there is a simulator S 
s.t., ViewV*(P(x,w)⟷V*(x)) ≈ S(x)

V learns nothing 
beyond the fact that 
x has the property



Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr 


Aside: this can be used to prove knowledge of the 
message in an El Gamal encryption (A,B) = (gr, m Yr)


P→V:  U := gu ; V→P: v ;  P→V: w := rv + u  ;  
V checks: gw  = AvU


Proof of Knowledge:

Firstly, gw = AvU  ⇒  w = rv+u, where U = gu


If after sending U, P could respond to two different 
values of v: w1 = rv1 + u and w2 = rv2 + u, then can 
solve for r (in a prime-order group)


HVZK: simulation picks w, v first and sets U = gw/Av



HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier


e.g. in PoK of discrete log, simulator picks (v,w) first and 
computes U (without knowing u). Relies on verifier to pick v 
independent of U.


Special soundness: If given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both 
accepted by verifier, then can derive a valid witness


e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)


Implies soundness: for each U s.t. prover has significant 
probability of being able to convince, can extract r from the 
prover with comparable probability (using “rewinding”, in a 
stand-alone setting)



Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),  
i.e., Y = gr and D = Cr [Chaum-Pederson]


Can be used to prove equality of two El Gamal encryptions 
(A,B) & (A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)


P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ; 
V checks: gw = YvU and Cw = DvM


Special Soundness:

gw=YvU, Cw=DvM  ⇒ w = rv+u = r’v+u’  
where U=gu, M=gu’ and Y=gr, D=Cr’


If P could satisfy both v=v1 and v=v2, then rv1 + u = r’v1 + u’ 
and rv2 + u = r’v2 + u’. Then r=r’ (in a prime-order group).


HVZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv

Two parallel executions of the 
previous proof, with same v and w 
(forcing same u, r)



Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when 
verifier is actively corrupt


Can be fixed by implementing the verifier using “secure 2-
party computation”


If verifier is a public-coin program (as in Chaum-
Pederson) — i.e., simply picks random values and sends 
them — then 2PC needed only to generate random coins


Alternatively, Fiat-Shamir Heuristic: random coins from 
verifier defined as H(trans), where H is a random oracle 
and trans is the transcript of the proof so far


Also, removes need for interaction in the proof!



VRF
NSEC5 VRF based on the discrete log assumption and a random 
oracle based non-interactive ZK proof


(SK,PK) = (y, Y=gy) and Fy(Q) = H(Cy), where C=H’(Q)


If H is an R.O., then DLA ensures F is a PRF


Proof that Fy(Q) = z: D s.t. H(D) = z and a ZK proof of 
equality of discrete logs for  (g,Y) and (C,D)


i.e., ∃y s.t. gy = Y and Cy = D


Non-interactive proof using the Fiat-Shamir heuristic 
applied to Chaum-Pederson


Does adding the proof hurt PRF property? 


Proof reveals nothing more than what (g,Y,C,D) reveals


Which reveals nothing more than what (g,Y) reveals:  
(C,D) can be simulated as (gr,Yr) since H’ random oracle



Fairly efficient ZK proofs systems exist for all NP properties


Even more efficient HVZK proof systems for specialised problems 
like equality of discrete logs


Fiat-Shamir heuristics can convert such protocols into non-
interactive proofs secure against actively corrupt verifiers too 
(but in the Random Oracle model)

Summary


