Zero Knowledge Proofs

Lecture 21



DNSSEC

@ Recall: Name servers, when queried with a domain name, return
an IP address record (signed by the zone owner), or report that
no such domain name exists

@ Question: How fo prove that an entry is missing, without
revealing anything else?

® NSEC: Have adjacent pairs (in sorted order of domain names)
signed fogether. Return a pair flanking the queried name.

® Reveals the adjacent domains. Allows zone enumeration.
® NSEC3: Use H(domain-name) in this proof.

@ Still allows offline enumeration (domain names have low-
entropy)

@ A proposal: NSEC5



DNSSEC

® NSECS5: Using "Verifiable Random Functions” (VRF)
® VRF is a PRF, with an additional public-key

>

>

S

Here SK and PK generated honestly
Remains a pseudorandom function even given PK

SK allows one to give a proof that Fs(x) = vy, without
revedling (anything about) SK. Proof verified using a PK.

@ A sound proof system: A corrupt prover cannot generate
a verifying proof for a pair (x,y) if Fs(x) # v

@ A (non-interactive) Zero-Knowledge proof!

NSECS5 proposes a Random Oracle based VRF (assuming
hardness of Discrete Log)



DNSSEC

@ Using a VRF to protect against zone-enumeration: Instead of
H(domain name), use Fsk(domain name)

@ For a missing entry for a query Q, return:
@ Y, and a VRF proof that F«(Q) =Y

® A pair of consecutive entries (Y1, Y2), signed by zone-owner,
such that Yy <Y <Y>

@ Adversary querying an honest name server can enumerate

Fsk(domain name), but that only reveals (an upper bound on) the
total number of entries

® Name server needs the VRF key SK (generated by the zone-owner)

to compute Fsk(Q) and the proof. But does not have access to the
signing key.

@ A corrupt name server learns all entries, and can also refuse to
answer queries, but it cannot give a wrong response



VRF

@ Original notion of a VRF by [MRV'99] requires security even for
PK generated by the adversary

® Constructions based on RSA, and later, “bilinear pairings”

® When (SK,PK) generated by a trusted party, can be based on any
general non-interactive zero-knowledge (NIZK) proof system

@ NSEC5 uses a VRF based on the discrete log assumption, but in
the random oracle model

® R.O. used for a proof-friendly PRF and the proof system
itself



A PRF from RO

Fsk(Q) = H(SKIIQ) is a PRF if H is a random oracle (and SK long
enough)

® Why? Infeasible fo guess SK correctly. Without querying H
on prefix SK, Fsk is identical to a truly random function.

But no PK for this F and no way fo prove correct evaluation
Instead, let (SK,PK) = (y, Y=g¥) and Fy(Q) = H(CY), where C=H'(Q)
@ Still a PRF (remains infeasible to guess y from Y, under DLA)
® Need a way to prove that Fs(Q) = z
@ Plan: Reveal D=CY and prove that it is indeed Cv. But how?
® A ZK proof of equality of discrete logs for (g,Y) and (C,D)
@ ie,3yst gr=Yand Cy =D



ZK Proof

Alice and Bob hold some data x. Bob wants fo prove that it has
some "property.’

® Properties we are typically interested in are "NP properties”

@ An NP property is specified by a poly-time computable
predicate R: x has the property = 3w s.t. R(x,w)=1

® i.e., theres a certificate to prove the property
@ Trivial proof for NP properties: send the certificate

Can a proof reveal nothing beyond the fact that x has the
property?

Yes!

Will allow interactive proofs (for now)



ZK Proof

® Consider an NP property specified by a predicate R:
i.e., X has the property = 3w s.t. R(x,w)=1. A ZK proof protocol

P«—V has the following properties
@ Completeness: if 3w R(x,w)=1, then Pr[P(x,w)<—V(x) = 1] = 1

@ Soundness: if Aw R(x,w)=1, then Pr[P*(x)«—V(x) = 1] = negl

(For any PPT p*) V learns nothing
beyond the fact that

@ A stronger notion: Proof of Knowledge x has the property

® Zero-Knowledge: if 3w R(x,w)=1, then view of [the verifier in
P(x,w)<—V(x) can be (indistinguishably) simulated from x

® This is called Honest Verifier ZK

@ Stronger property: For any PPT V¥ there is a simulator S
s.t., Viewy*(P(x,w)«—V*(x)) = S(x)



Honest-Verifier ZK Proofs

® ZK Proof of knowledge of discrete log of A=gr

@ Aside: this can be used to prove knowledge of the
message in an El Gamal encryption (A,B) = (g7, m Yr)

8 P—>V: Ui=gu;V—>P:v; P>Viw:i=rv+u ;
V checks: g¥ = AU

@ Proof of Knowledge:
@ Firstly, gv =AU = w = rv+u, where U = g

@ If after sending U, P could respond to two different
values of v: wi = rvi + u and wz = rvz + u, then can
solve for r (in a prime-order group)

® HVZK: simulation picks w, v first and sets U = gw/Av



HVZK and Special Soundness

® HVZK: Simulation for honest (passively corrupt) verifier

® e.g. in PoK of discrete log, simulator picks (vw) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

@ Special soundness: If given (U,yw) and (UVv' w’) s.t. v#v' and both
accepted by verifier, then can derive a valid witness

® e.g. solve r from w=rv+u and w'=rv'+u (given vw,v',w’)

® Implies soundness: for each U s.t. prover has significant
probability of being able to convince, can extract r from the
prover with comparable probability (using “rewinding”, in a
stand-alone setting)



Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y).(C,)D)),

i.,e., Y = g" and D = C" [Chaum-Pederson]

® Can be used to prove equality of two El Gamal encryptions
(A,B) & (A,B’) w.r.t public-key (g,Y): set (C,D) := (A/A,B/B)

P—V: (UM) := (g+,C4); V—P: v ; P—V: W := rv+u ;

V checks: g¥ = YYU and C%¥ = D'M

Special Soundness:

=\

Two parallel executions of the
previous proof, with same v and w
(forcing same u, 1)

@ g¥=Y'U, C=D'M = w = rv+u = rv+u’

where U=g4, M=g¥ and Y=gr, D=C"

@ If P could satisfy both v=v; and v=v2, then rvi + u = r'v; + u’
and rvz + u = r'vz + u. Then r=r’ (in a prime-order group).
HVZK: simulation picks w, v first and sets U=g“/Av, M=Cw/DV




Fiat-Shamir Heuristic

@ Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

® Can be fixed by implementing the verifier using “secure 2-
party computation”

@ If verifier is a public-coin program (as in Chaum-
Pederson) — i.e., simply picks random values and sends
them — then 2PC needed only to generate random coins

@ Alternatively, Fiat-Shamir Heuristic: random coins from
verifier defined as H(trans), where H is a random oracle
and trans is the franscript of the proof so far

@ Also, removes need for interaction in the proof!



VRF

® NSEC5 VRF based on the discrete log assumption and a random
oracle based non-interactive ZK proof

>

>

>

(SK,PK) = (y, Y=g¥) and Fy(Q) = H(CY), where C=H'(Q)
If His an R.O., then DLA ensures F is a PRF

Proof that Fy(Q) = z: D s.t. H(D) = z and a ZK proof of
equality of discrete logs for (g,Y) and (C,D)

® ie,3dyst gr=Yand CY =D

@ Non-interactive proof using the Fiat-Shamir heuristic
applied to Chaum-Pederson

Does adding the proof hurt PRF property?
® Proof reveals nothing more than what (g,Y,C,D) reveals

® Which reveals nothing more than what (g,Y) reveals:
(C.D) can be simulated as (gr,Yr) since H random oracle



Summary

@ Fairly efficient ZK proofs systems exist for all NP properties

@ Even more efficient HVZK proof systems for specialised problems
like equality of discrete logs

@ Fiat-Shamir heuristics can convert such protfocols into non-
interactive proofs secure against actively corrupt verifiers too
(but in the Random Oracle model)



