Zero Knowledge Proofs Lecture 21

DNSSEC

- Recall: Name servers, when queried with a domain name, return an IP address record (signed by the zone owner), or report that no such domain name exists
- Question: How to prove that an entry is missing, without revealing anything else?
 - SEC: Have adjacent pairs (in sorted order of domain names) signed together. Return a pair flanking the queried name.
 - Reveals the adjacent domains. Allows zone enumeration.
 - SEC3: Use H(domain-name) in this proof.
 - Still allows offline enumeration (domain names have lowentropy)
- A proposal: NSEC5

DNSSEC

- SEC5: Using "Verifiable Random Functions" (VRF)
- VRF is a PRF, with an additional public-key
 - Here SK and PK generated honestly
 - Remains a pseudorandom function even given PK
 - SK allows one to give a proof that F_{SK}(x) = y, without revealing (anything about) SK. Proof <u>verified</u> using a PK.
 - A sound proof system: A corrupt prover cannot generate a verifying proof for a pair (x,y) if F_{sk}(x) ≠ y
 - A (non-interactive) Zero-Knowledge proof!
 - NSEC5 proposes a Random Oracle based VRF (assuming hardness of Discrete Log)

DNSSEC

 Using a VRF to protect against zone-enumeration: Instead of H(domain name), use F_{SK}(domain name)

- For a missing entry for a query Q, return:
 - Y, and a VRF proof that $F_{SK}(Q) = Y$
 - A pair of consecutive entries (Y₁, Y₂), signed by zone-owner, such that Y₁ < Y < Y₂
- Adversary querying an honest name server can enumerate F_{SK}(domain name), but that only reveals (an upper bound on) the total number of entries
- Name server needs the VRF key SK (generated by the zone-owner) to compute F_{SK}(Q) and the proof. But does not have access to the signing key.
 - A corrupt name server learns all entries, and can also refuse to answer queries, but it cannot give a wrong response

VRF

- Original notion of a VRF by [MRV'99] requires security even for PK generated by the adversary
 - Constructions based on RSA, and later, "bilinear pairings"
- When (SK,PK) generated by a trusted party, can be based on <u>any</u> general non-interactive zero-knowledge (NIZK) proof system
- SEC5 uses a VRF based on the discrete log assumption, but in the random oracle model
 - R.O. used for a proof-friendly PRF and the proof system itself

A PRF from RO

- F_{SK}(Q) = H(SK||Q) is a PRF if H is a random oracle (and SK long enough)
 - Why? Infeasible to guess SK correctly. Without querying H on prefix SK, F_{SK} is identical to a truly random function.
 But no PK for this F and no way to prove correct evaluation
 Instead, let (SK,PK) = (y, Y=g^y) and F_y(Q) = H(C^y), where C=H'(Q)
 - Still a PRF (remains infeasible to guess y from Y, under DLA)
 - Need a way to prove that $F_{SK}(Q) = z$

3

3

- Plan: Reveal D=C^y and prove that it is indeed C^y. But how?
- A ZK proof of equality of discrete logs for (g,Y) and (C,D)
 - Ø i.e., $\exists y \text{ s.t. } g^y = Y$ and $C^y = D$

ZK Proof

- Alice and Bob hold some data x. Bob wants to prove that it has some "property."
 - Properties we are typically interested in are "NP properties"
 - An NP property is specified by a poly-time computable predicate R: x has the property = 3w s.t. R(x,w)=1
 - i.e., there's a certificate to prove the property
 - Trivial proof for NP properties: send the certificate
- So Can a proof reveal nothing beyond the fact that x has the property?
- Yes!
- Will allow interactive proofs (for now)

ZK Proof

- Consider an NP property specified by a predicate R:
 i.e., x has the property = ∃w s.t. R(x,w)=1. A ZK proof protocol
 P↔V has the following properties
 - Sompleteness: if ∃w R(x,w)=1, then Pr[P(x,w)↔V(x) = 1] = 1
 - Soundness: if ∄w R(x,w)=1, then Pr[P*(x)↔V(x) = 1] = negl
 (for any PPT P*)
 V learns nothing beyond the fact that
 - A stronger notion: Proof of Knowledge
 - Sero-Knowledge: if ∃w R(x,w)=1, then view of the verifier in P(x,w)↔V(x) can be (indistinguishably) simulated from x

x has the property

- This is called Honest Verifier ZK
- Stronger property: For any PPT V*, there is a simulator S
 s.t., View_V*(P(x,w)↔V*(x)) ≈ S(x)

Honest-Verifier ZK Proofs

ZK Proof of knowledge of discrete log of A=g^r

- Aside: this can be used to prove knowledge of the message in an El Gamal encryption (A,B) = (g^r, m Y^r)
- Proof of Knowledge:
 - Firstly, $g^w = A^v U \implies w = rv+u$, where $U = g^u$
 - If after sending U, P could respond to two different values of v: w₁ = rv₁ + u and w₂ = rv₂ + u, then can solve for r (in a prime-order group)

• HVZK: simulation picks w, v first and sets $U = g^w/A^v$

HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks (v,w) first and computes U (without knowing u). Relies on verifier to pick v independent of U.
- Special soundness: If given (U,v,w) and (U,v',w') s.t. v≠v' and both accepted by verifier, then can derive a valid witness
 - e.g. solve r from w=rv+u and w'=rv'+u (given v,w,v',w')
 - Implies soundness: for each U s.t. prover has significant probability of being able to convince, can extract r from the prover with comparable probability (using "rewinding", in a stand-alone setting)

Honest-Verifier ZK Proofs

- ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
 i.e., Y = g^r and D = C^r [Chaum-Pederson]
 - Can be used to prove equality of two El Gamal encryptions
 (A,B) & (A',B') w.r.t public-key (g,Y): set (C,D) := (A/A',B/B')
- $P \rightarrow V: (U,M) := (g^u,C^u); V \rightarrow P: v ; P \rightarrow V: w := rv+u ;$ • V checks: $g^w = Y^vU$ and $C^w = D^vM$
- Special Soundness:

- Two parallel executions of the previous proof, with same v and w (forcing same u, r)
- g^w=Y^vU, C^w=D^vM ⇒ w = rv+u = r'v+u'
 where U=g^u, M=g^{u'} and Y=g^r, D=C^{r'}
- If P could satisfy both $v=v_1$ and $v=v_2$, then $rv_1 + u = r'v_1 + u'$ and $rv_2 + u = r'v_2 + u'$. Then r=r' (in a prime-order group).
- HVZK: simulation picks w, v first and sets U=g^w/A^v, M=C^w/D^v

Fiat-Shamir Heuristic

- Limitation: Honest-Verifier ZK does not guarantee ZK when verifier is actively corrupt
 - Can be fixed by implementing the verifier using "secure 2party computation"
 - If verifier is a public-coin program (as in Chaum-Pederson) — i.e., simply picks random values and sends them — then 2PC needed only to generate random coins
 - Alternatively, Fiat-Shamir Heuristic: random coins from verifier defined as H(trans), where H is a random oracle and trans is the transcript of the proof so far
 - Also, removes need for interaction in the proof!

VRF

- SEC5 VRF based on the discrete log assumption and a random oracle based non-interactive ZK proof
 - (SK,PK) = (y, Y=g^y) and $F_y(Q) = H(C^y)$, where C=H'(Q)
 - If H is an R.O., then DLA ensures F is a PRF
 - Proof that F_y(Q) = z: D s.t. H(D) = z and a ZK proof of equality of discrete logs for (g,Y) and (C,D)
 - Ø i.e., $\exists y \text{ s.t. } g^y = Y \text{ and } C^y = D$
 - Non-interactive proof using the Fiat-Shamir heuristic applied to Chaum-Pederson
 - Does adding the proof hurt PRF property?
 - Proof reveals nothing more than what (g,Y,C,D) reveals
 - Which reveals nothing more than what (g,Y) reveals:
 (C,D) can be simulated as (g^r,Y^r) since H' random oracle

Summary

- Fairly efficient ZK proofs systems exist for all NP properties
- Even more efficient HVZK proof systems for specialised problems like equality of discrete logs
- Fiat-Shamir heuristics can convert such protocols into noninteractive proofs secure against actively corrupt verifiers too (but in the Random Oracle model)