
Zero Knowledge Proofs
Lecture 21

DNSSEC
Recall: Name servers, when queried with a domain name, return
an IP address record (signed by the zone owner), or report that
no such domain name exists

Question: How to prove that an entry is missing, without
revealing anything else?

NSEC: Have adjacent pairs (in sorted order of domain names)
signed together. Return a pair flanking the queried name.

Reveals the adjacent domains. Allows zone enumeration.

NSEC3: Use H(domain-name) in this proof.

Still allows offline enumeration (domain names have low-
entropy)

A proposal: NSEC5

DNSSEC
NSEC5: Using “Verifiable Random Functions” (VRF)

VRF is a PRF, with an additional public-key

Here SK and PK generated honestly

Remains a pseudorandom function even given PK

SK allows one to give a proof that FSK(x) = y, without
revealing (anything about) SK. Proof verified using a PK.

A sound proof system: A corrupt prover cannot generate
a verifying proof for a pair (x,y) if FSK(x) ≠ y

A (non-interactive) Zero-Knowledge proof!

NSEC5 proposes a Random Oracle based VRF (assuming
hardness of Discrete Log)

DNSSEC
Using a VRF to protect against zone-enumeration: Instead of
H(domain name), use FSK(domain name)

For a missing entry for a query Q, return:

Y, and a VRF proof that FSK(Q) = Y

A pair of consecutive entries (Y1, Y2), signed by zone-owner,
such that Y1 < Y < Y2

Adversary querying an honest name server can enumerate
FSK(domain name), but that only reveals (an upper bound on) the
total number of entries

Name server needs the VRF key SK (generated by the zone-owner)
to compute FSK(Q) and the proof. But does not have access to the
signing key.

A corrupt name server learns all entries, and can also refuse to
answer queries, but it cannot give a wrong response

VRF

Original notion of a VRF by [MRV’99] requires security even for
PK generated by the adversary

Constructions based on RSA, and later, “bilinear pairings”

When (SK,PK) generated by a trusted party, can be based on any
general non-interactive zero-knowledge (NIZK) proof system

NSEC5 uses a VRF based on the discrete log assumption, but in
the random oracle model

R.O. used for a proof-friendly PRF and the proof system
itself

A PRF from RO
FSK(Q) = H(SK||Q) is a PRF if H is a random oracle (and SK long
enough)

Why? Infeasible to guess SK correctly. Without querying H
on prefix SK, FSK is identical to a truly random function.

But no PK for this F and no way to prove correct evaluation

Instead, let (SK,PK) = (y, Y=gy) and Fy(Q) = H(Cy), where C=H’(Q)

Still a PRF (remains infeasible to guess y from Y, under DLA)

Need a way to prove that FSK(Q) = z

Plan: Reveal D=Cy and prove that it is indeed Cy. But how?

A ZK proof of equality of discrete logs for (g,Y) and (C,D)

i.e., ∃y s.t. gy = Y and Cy = D

ZK Proof
Alice and Bob hold some data x. Bob wants to prove that it has
some “property.”

Properties we are typically interested in are “NP properties”

An NP property is specified by a poly-time computable
predicate R: x has the property ≡ ∃w s.t. R(x,w)=1

i.e., there’s a certificate to prove the property

Trivial proof for NP properties: send the certificate

Can a proof reveal nothing beyond the fact that x has the
property?

Yes!

Will allow interactive proofs (for now)

ZK Proof
Consider an NP property specified by a predicate R:
i.e., x has the property ≡ ∃w s.t. R(x,w)=1. A ZK proof protocol
P⟷V has the following properties

Completeness: if ∃w R(x,w)=1, then Pr[P(x,w)⟷V(x) = 1] = 1

Soundness: if ∄w R(x,w)=1, then Pr[P*(x)⟷V(x) = 1] = negl

(for any PPT P*)

A stronger notion: Proof of Knowledge

Zero-Knowledge: if ∃w R(x,w)=1, then view of the verifier in
P(x,w)⟷V(x) can be (indistinguishably) simulated from x

This is called Honest Verifier ZK

Stronger property: For any PPT V*, there is a simulator S
s.t., ViewV*(P(x,w)⟷V*(x)) ≈ S(x)

V learns nothing
beyond the fact that
x has the property

Honest-Verifier ZK Proofs
ZK Proof of knowledge of discrete log of A=gr

Aside: this can be used to prove knowledge of the
message in an El Gamal encryption (A,B) = (gr, m Yr)

P→V: U := gu ; V→P: v ; P→V: w := rv + u ;
V checks: gw = AvU

Proof of Knowledge:

Firstly, gw = AvU ⇒ w = rv+u, where U = gu

If after sending U, P could respond to two different
values of v: w1 = rv1 + u and w2 = rv2 + u, then can
solve for r (in a prime-order group)

HVZK: simulation picks w, v first and sets U = gw/Av

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (v,w) first and
computes U (without knowing u). Relies on verifier to pick v
independent of U.

Special soundness: If given (U,v,w) and (U,v’,w’) s.t. v≠v’ and both
accepted by verifier, then can derive a valid witness

e.g. solve r from w=rv+u and w’=rv’+u (given v,w,v’,w’)

Implies soundness: for each U s.t. prover has significant
probability of being able to convince, can extract r from the
prover with comparable probability (using “rewinding”, in a
stand-alone setting)

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(C,D)),
i.e., Y = gr and D = Cr [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions
(A,B) & (A’,B’) w.r.t public-key (g,Y): set (C,D) := (A/A’,B/B’)

P→V: (U,M) := (gu,Cu); V→P: v ; P→V: w := rv+u ;
V checks: gw = YvU and Cw = DvM

Special Soundness:

gw=YvU, Cw=DvM ⇒ w = rv+u = r’v+u’
where U=gu, M=gu’ and Y=gr, D=Cr’

If P could satisfy both v=v1 and v=v2, then rv1 + u = r’v1 + u’
and rv2 + u = r’v2 + u’. Then r=r’ (in a prime-order group).

HVZK: simulation picks w, v first and sets U=gw/Av, M=Cw/Dv

Two parallel executions of the
previous proof, with same v and w
(forcing same u, r)

Fiat-Shamir Heuristic
Limitation: Honest-Verifier ZK does not guarantee ZK when
verifier is actively corrupt

Can be fixed by implementing the verifier using “secure 2-
party computation”

If verifier is a public-coin program (as in Chaum-
Pederson) — i.e., simply picks random values and sends
them — then 2PC needed only to generate random coins

Alternatively, Fiat-Shamir Heuristic: random coins from
verifier defined as H(trans), where H is a random oracle
and trans is the transcript of the proof so far

Also, removes need for interaction in the proof!

VRF
NSEC5 VRF based on the discrete log assumption and a random
oracle based non-interactive ZK proof

(SK,PK) = (y, Y=gy) and Fy(Q) = H(Cy), where C=H’(Q)

If H is an R.O., then DLA ensures F is a PRF

Proof that Fy(Q) = z: D s.t. H(D) = z and a ZK proof of
equality of discrete logs for (g,Y) and (C,D)

i.e., ∃y s.t. gy = Y and Cy = D

Non-interactive proof using the Fiat-Shamir heuristic
applied to Chaum-Pederson

Does adding the proof hurt PRF property?

Proof reveals nothing more than what (g,Y,C,D) reveals

Which reveals nothing more than what (g,Y) reveals:
(C,D) can be simulated as (gr,Yr) since H’ random oracle

Fairly efficient ZK proofs systems exist for all NP properties

Even more efficient HVZK proof systems for specialised problems
like equality of discrete logs

Fiat-Shamir heuristics can convert such protocols into non-
interactive proofs secure against actively corrupt verifiers too
(but in the Random Oracle model)

Summary

