
Crypto with Passwords
Lecture 22

Password or passphrase: Low-entropy (shared) secret

Typical goal: client authenticating to server, without being
tied to a device holding a cryptographic key. On
authentication, a session key should be set up.

Also, often Mutual Authentication (if server/client can’t/doesn’t
want to use certificates alone to verify server’s authenticity)

Cannot get “negligible” security error: password can be guessed
with some significant probability

Goal: allow only an online guessing (dictionary) attack. Prevent
offline dictionary attacks.

Even if server compromised, still somewhat protect the
passwords, by allowing only a slow offline dictionary attack

Passwords

Common scenario: client only has a password rather than a key.
Server has some information derived from client’s password

They will on-the-fly generate a session key from the password,
and interact using it

Note: If no certificates, client may not a priori know if the
server is genuine

Requires the key to look random to the adversary

Unless the adversary guesses the password and impersonates
the client

Rate/number of attempts limited so that online
dictionary attack has a small success probability

Naïve (non-)solution (in the random oracle model)

Client sends passwd to server, server checks if H(passwd)
matches a stored value, and then they both use this as key

Key from Password

Naïve (non-)solution: Server stores Key = H(passwd)

If the server is compromised, an attacker can launch an offline
dictionary attack to recover many passwords

Attacker may possess a “Rainbow Table” — precomputed
hashes of a dictionary — and can quickly recover almost all
the stored passwords

Key is not pseudorandom (even if server not compromised) since
an offline adversary can enumerate a “short” list of possible keys

Typical solutions

Salting prevents Rainbow Table attacks: Store H(passwd,salt)
where salt is a long random string (sent to the client)

Key should be used only for setting up an authenticated
channel (i.e., ensure forward secrecy)

To make offline dictionary attack harder, use (moderately)
hard hash functions

Key from Password

Idea: computing H(⋅) should be moderately hard, so that the
offline attacker is slowed down

Iterated hash functions

e.g., PBKDF2 in RSA PKCS #5 (version 2):
H(IV,msg) treated like a PRF, with IV being a key.
Iterate as U1 = H(Passwd,Salt), Ui+1 = H(Passwd,Ui).
Output length extended using “counter mode”.

WPA2: between an Authenticator (server) and a Supplicant
(client), where they share a “Pre-Shared Key”:
PSK = PBKDF2(hash = HMAC-SHA1, #iterations = 4096,
 msg = Passwd, salt = SSID, output length = 256)
“Transient Key” derived from PSK, nonces, and mac addresses.
Only nonces are exchanged between server & client.

Key from Password

In standards in this area, H is in fact
called a “PRF” rather than hash

HMAC
HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

RE
CA

LL

While iterated hashing slows down attack in software, much
faster custom hardware (a.k.a ASIC) is not too expensive

Solution (on going research): Memory Hard Functions

Fast memory is still very expensive

So try to make the function require large amounts of
memory.

Key from Password

No forward secrecy in WPA2!

If password is revealed past sessions can be decrypted

Transient key is derived from password and publicly known
values (nonces exchanged)

Solution: Use keys from password only for authentication
and use key exchange over the authenticated channel to
derive encryption keys

Password-Authenticated Key Exchange (PAKE)

Key from Password

Password-Authenticated Key Exchange

Agree on a secret symmetric key, over a network

Client has a password, and server has related information

Some considerations

A session is compromised if the session key is not
pseudorandom to the adversary

Adversary can interact with the server, or with the client, or
with both, concurrently in multiple sessions that use the
same password (MITM attacks)

Adversary may learn a session key in one session, but that
shouldn’t compromise the keys in other sessions

Adversary may corrupt the client or server (and may learn
the password), but this shouldn’t compromise past sessions

PAKE

Several constructions, starting in early 90’s, providing varying levels
of security

Typical construction uses H(passwd) to mask a DDH key-exchange

Due to DDH security, eavesdropping adversary doesn’t learn
the key

Without password, an adversary playing as client/server
doesn’t learn the key accepted by its honest partner

Example: Server given (v,s) to store, where v = gπ, π = H(s,pwd).
client→server: gx ; server→client: s, v+gy (i.e., v as a mask);
K = Kclnt = (gy)x+π = Ksrvr = gxy⋅vy. Key = H(K).

Problem: attack by knowing just v. E.g., send gx/v in the
first step), so that Ksrvr = (gx/v)y.vy = (gy)x

PAKE Protocols

Several constructions, starting in early 90’s, providing varying levels
of security

Typical construction uses H(passwd) to mask a DDH key-exchange

Due to DDH security, eavesdropping adversary doesn’t learn
the key

Without password, an adversary playing as client/server
doesn’t learn the key accepted by its honest partner

Example: Server given (v,s) to store, where v = gπ, π = H(s,pwd).
client→server: gx ; server→client: u, s, v+gy (i.e., v as a mask);
K = Kclnt = (gy)x+uπ = Ksrvr = gxy⋅vuy. Key = H(K).

Fix: Server picks a random u, to force the client to know π
(and hence pwd)

PAKE Protocols

Protocols currently used in practice are proven secure in the
random oracle model under various security definitions. Standard
model protocols are also known.

More comprehensive definitions address composition issues: e.g.,
when multiple (related) passwords are used with multiple servers

Universally Composable security (REAL/IDEAL security definition)

In the IDEAL world, a trusted party comparing passwords
provided by parties, and if equal, allocating them random keys.
Note: Even in IDEAL, security depends on passwords.

Needs a setup (e.g., random oracle, or common random string)

E.g., OPAQUE, in the random oracle model, under the “One-
more Diffie-Hellman assumption”. Avoids revealing salt by
using “Oblivious PRF”

PAKE Protocols

