
Secure Messaging
Lecture 23

Messaging

Alice

Bob

Communication model different from standard setting for TLS

Receiver need not be online when Sender sends a message

Corruption model

Server/network is adversarial (trusted identity registration to
be enforced separately)

Windows of compromise when a party is under adversarial
control (or readable to adversary)

Messages that are sent/received while a party is corrupt
are revealed to the adversary

Goal: Messages sent/received prior to compromise and after
compromise should remain “secure”

Forward secrecy (secrecy of prior messages) and
“Future secrecy” (secrecy of future messages)

Protocols rely on secure deletion (of keys and messages)

Secure Messaging

Many applications/services offering secure chat

“Off-The-Record” messaging (2004)

Signal protocol (starting 2013)

Used in WhatsApp, Google Allo, Facebook Messenger,
Skype (optional), etc.

More recently, some formal analysis

Secure Messaging

Synchronous Messaging

A first solution

Alice

Bob

PK1
AEncPK0

B(m1)

PK1
BEncPK1

A(m’1)

PK2
AEncPK1

B(m2)

PK2
BEncPK2

A(m’2)

PK0
B should be used only once (over all senders), so that SK0

B can
be deleted after recovering m0

E.g., Alice may download PK0
B from a list of PKs hosted by a

server who deletes each PK on download

Synchronous Messaging

A first solution

Alice

Bob

PK1
AEncPK0

B(m1)

PK1
BEncPK1

A(m’1)

PK2
AEncPK1

B(m2)

PK2
BEncPK2

A(m’2)

(SKi,PKi) are generated just before sending PKi and deleted right
after using SKi for decryption (window for compromising SKi)

At any point only one SK stored

Drawback: Assumes strict alternation

An Optimization Suggestion

Alice

Bob

PK1
AEncPK0

B(m1)

PK1
BEncPK1

A(m’1)

PK2
AEncPK1

B(m2)

PK2
BEncPK2

A(m’2)

Consider using El Gamal encryption: PK0
B=gy, ciphertext = (gx,m+K)

where K derived from Yx, and PK1
A=gx’

Use x’=x?

Can be OK when a symmetric key is derived using a
random oracle, under stronger assumptions than DDH

included!

Asynchronicity

Alice

Bob

PK1
AEncPK0

B(m1)

PK1
BEncPK1

A(m’1)

PK2
AEncPK1

B(m2) PK2
BEncPK2

A(m’2)

Ideally, should be able to delete the decryption key right after
using it for a single decryption

EncPK1
A(m’2)

SK1
A should be

remembered until

PK2
A ack’ed and

some time passes

PK1
B

Have to
continue

using PK1
A

Repeat PK1
B until a

response received
(to simplify

 book-keeping)

But when “optimised”
same derived key for

many messages!

Addressed by
“Ratcheting”

Suppose Alice and Bob have shared a symmetric key

Want forward secrecy without need for synchronisation

E.g., both sending many messages, without receiving any

Ratcheting

Ki → Ki+1 using a "forward-secure PRG” s.t. Ki remains
pseudorandom even given Ki+1

After using Ki for encryption/decryption, derive Ki+1 and delete Ki

Does not help with “future secrecy”

Ratcheting

Double Ratcheting
X1SKEK00

B(m1)

Y1

X2SKEK10
B(m3)

Update public-keys for every received message, and do symmetric
key ratcheting for messages in between

Can delete an asymmetric secret key after the second symmetric
key is derived from it (e.g., above x1 deleted after K10A derived)

X1SKEK01
B(m2)

SKEK10
A(m’1)

Y1SKEK11
A(m’2)

Y0X1

K00
B

K01
B Y1X1

K10
A

K11
A

Y1X2

K10
B

K02
B

K12
A

K11
B

Double Ratcheting
X1SKEK00

B(m1)

Y1

X2SKEK10
B(m3)

If messages received out of order, will need to retain symmetric
keys that were ratcheted through

X1SKEK01
B(m2)

SKEK10
A(m’1)

Y1SKEK11
A(m’2)

Y0X1

K00
B

K01
B Y1X1

K10
A

K11
A

Y1X2

K10
B

K02
B

K12
A

K11
B

Messaging

Alice

Bob

Need to protect against a
corrupt server.

Identity key (i.e., signature verification key) should be obtained via
(out-of-band) trusted setup

Asymmetric key updates are MAC’ed using a key that was derived
when the current asymmetric key was in force

Symmetric keys are used for AEAD (e.g., using encrypt-then-MAC)

Easy to ensure that conversation is with an entity who created a
certain “identity key” (signature verification key)

But in real life, want to ensure it is a certain person

A malicious server can launch an adversary-in-the-middle attack

Options (can use a combination):

Trust-On-First-Use: problematic assumption, e.g., if server
always corrupt.

Trusted public-key servers which verify real-life identity!
Require “transparency” to deter corrupt key servers.

Manual key dissemination, possibly via a web-of-trust

Share passwords and use PAKE

KeyBase: proves control of social media identities instead of
“real-life” identity. Enough to trust at least one service.

Establishing Identity

Initial encryption
PK will be signed

with this

Suppose Alice and Bob chat with each other. Later, Bob turns
over the transcript to a “judge”

Can Alice claim that she is not responsible for the transcript?

Problem: If the messages are signed by Alice, she can’t deny
responsibility

Caveat: Alice’s private key/device could have been stolen

Alice should not sign the messages, but only MAC them

Bob also has the MAC key. So he could have faked the MACs
himself

More complicated if the (encrypted) transcript between Alice
and Bob is attested to by trusted intermediaries: Need
deniable encryption

Deniability

To be convincing, app should expose this feature to Bob!

