Secure Messaging

Lecture 23

Messaging

A

V)

/
=P
L i

-4

Secure Messaging

Communication model different from standard setting for TLS
@ Receiver need not be online when Sender sends a message
Corruption model

® Server/network is adversarial (trusted identity registration to
be enforced separately)

@ Windows of compromise when a party is under adversarial
control (or readable to adversary)

® Messages that are sent/received while a party is corrupt
are reveadled to the adversary

Goal: Messages sent/received prior to compromise and after
compromise should remain “secure”

® Forward secrecy (secrecy of prior messages) and
"Future secrecy” (secrecy of future messages)

Protocols rely on secure deletion (of keys and messages)

Secure Messaging

® Many applications/services offering secure chat
@ 'Off-The-Record” messaging (2004)
@ Signal protocol (starting 2013)

@ Used in WhatsApp, Google Allo, Facebook Messenger,
Skype (optional), etc.

@ More recently, some formal analysis

Synchronous Messaging
A first solution

Encex?(m;) PKL N —

) <] - Encex(m’y) PK% A

Alice Bob

Encec(mz) PK2 =

% N - Encei(m’2) PK%
@ PK$ should be used only once (over all senders), so that SK§ can
be deleted after recovering mo

@ E.g., Alice may download PK% from a list of PKs hosted by a
server who deletes each PK on download

Synchronous Messaging
A first solution

Encex?(m;) PKL N —

) < N1 - Encexi(m’y) PK%)4

Alice Bob

Encec(mz) PK2 =

% N - Encei(m’2) PK%

® (SKi,PKi) are generated just before sending PKi and deleted right
after using SKi for decryption (window for compromising SKi)

@ At any point only one SK stored

® Drawback: Assumes strict alternation

An Optimization Suggestion

included!
-~
Enced(mi) PKL N~ ”
-
z ¢ 7] EnCPK;(m'1) PKE :
-
Encex(mz) PK4 i ¥ -~
% N - Encei(m’2) PK%

® Consider using El Gamal encryption: PK3=gY, ciphertext = (gx,m+K)
where K derived from Yx, and PKj=g¥

® Use x'=x?

® Can be OK when a symmetric key is derived using a
random oracle, under stronger assumptions than DDH

Alice

Asynchronicity

Vs

.

Encex?(m;) PKL N >
< N~ Encexi(m’y) PKY A=
’ 1

: /—L (_/\ 1 :)
] \ - = Have to Repeat PKjuntil a
SKAS:OUI: beﬂ ; continue | | response re.ceived

remzem er"e unti 2 using PK. (to S'mP“fY
PK‘ ack’ed and . / book-keeping) |

some time passes

-

Addressed by
"Ratcheting”

(&

~N

But when “optimised”
same derived key for
many messages!

@ Ideally, should be able to delete the decryption key right after

using it for a single decryption

Ratcheting

Suppose Alice and Bob have shared a symmeitric key
Want forward secrecy without need for synchronisation

@ E.g., both sending many messages, without receiving any

Ratcheting —~ m==——=3
FALLALAS

Ki — Kis1 using a "forward-secure PRG” s.t. Ki remains
pseudorandom even given Ki,

After using K; for encryption/decryption, derive K1 and delete K;

Does not help with “future secrecy”

.. Double Ratcheting

@ SKE(my) X, = .
EK% SKE(m2) X, =

> X1 Y1
_ SKEk9(my) Y. KS

/ SKEa(mE) Yo i

& 2 KIZA

X2 Y1
SKEKwB(m3) X2

10
|<B

11

® Update public-keys for every received message, and do symmetric
key ratcheting for messages in between

® Can delete an asymmetric secret key after the second symmetric
key is derived from it (e.g., above x; deleted after K!04 derived)

.. Double Ratcheting

K% SKEKO%(ml) X, e >
EK% SKEx(m2) X -

¥ - skeem) Y.
/w/;‘/ © SKEx(m?) Y. Klzi
L <
X2 Y
10 SKEKIOB(m3) Xz

K'g n ,

4 X1 Y

@ If messages received out of order, will need fo retain symmetric
Keys that were ratcheted through

Messaging

Need tfo protect against a
corrupt server.

|

A8
N\Q)
S
\

%

/ 7
L o

v v

@ Identity key (i.e., signature verification key) should be obtained via
(out-of-band) trusted setup

® Asymmetric key updates are MAC’ed using a key that was derived
when the current asymmetric key was in force

® Symmetric keys are used for AEAD (e.g., using encrypt-then-MAC)

@ But in real life, want to ensure it is a certain pe

Establishing Identity

Easy fo ensure that conversation is with an entity who created a
certain “identity key” (signature verification key) ﬁlni’rial encryption
rson

PK will be signed
with this

® A malicious server can launch an adversary-in-the-middle attack)

® Options (can use a combination):

® Trust-On-First-Use: problematic assumption, e.qg., if server
always corrupt.

@ Trusted public-key servers which verify real-life identity!
Require “transparency” to deter corrupt key servers.

® Manual key dissemination, possibly via a web-of-trust
Share passwords and use PAKE

@ KeyBase: proves control of social media identities instead of
“real-life” identity. Enough to trust at least one service.

Deniability
Suppose Alice and Bob chat with each other. Later, Bob furns
over the transcript to a “judge”

Can Alice claim that she is not responsible for the transcript?

® Problem: If the messages are signed by Alice, she cant deny
responsibility

@ Caveat: Alices private key/device could have been stolen
Alice should not sign the messages, but only MAC them

@ Bob also has the MAC key. So he could have faked the MACs
himsel f <[To be convincing, app should expose this feature to Bob!]

® More complicated if the (encrypted) transcript between Alice
and Bob is attested to by ftrusted intermediaries: Need
deniable encryption

