Defining Encryption (ctd.)

Lecture 3
SIM & IND security

Beyond One-Time: **CPA** security Computational Indistinguishability

Onetime Encryption

Perfect Secrecy A (2,2)-secret-sharing scheme:

K and Enc(m,K) are shares of m

- Perfect secrecy: ∀ m, m' ∈ M
 - \bullet {Enc(m,K)}_{K \leftarrow KeyGen} = {Enc(m',K)}_{K \leftarrow KeyGen}
- Distribution of the ciphertext is defined by the randomness in the key
- In addition, require correctness
 - ∀ m, K, Dec(Enc(m,K), K) = m
- \odot E.q. One-time pad: $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ and $Enc(m,K) = m \oplus K, Dec(c,K) = c \oplus K$
 - More generally $\mathcal{M} = \mathcal{K} = \mathcal{C} = \mathcal{G}$ (a finite group) and Enc(m,K) = m+K, Dec(c,K) = c-K

M	0	1	2	3
a	×	У	У	Z
Ь	У	×	Z	У

Assuming K uniformly drawn from ${\mathscr K}$

 $Pr[Enc(a,K)=x] = \frac{1}{4},$ Pr[Enc(a,K)=y] = $\frac{1}{2}$, $Pr[Enc(a,K)=z] = \frac{1}{4}$.

Same for Enc(b,K).

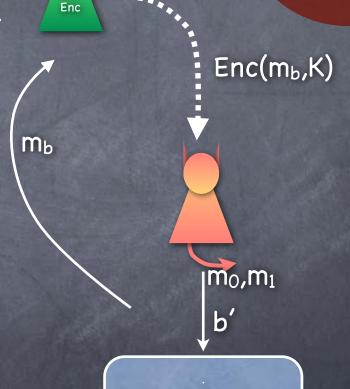
Recall

Onetime Encryption

IND-Onetime Security

- IND-Onetime Experiment
 - Experiment picks a random bit b. It also runs KeyGen to get a key K
 - Adversary sends two messages m₀,
 m₁ to the experiment
 - Experiment replies with Enc(mb,K)
 - Adversary returns a guess b'
 - Experiments outputs 1 iff b'=b
- IND-Onetime secure if for every adversary, Pr[b'=b] = 1/2

Equivalent to perfect secrecy



b←{0,1}

b'=b?

Yes/No

Key/

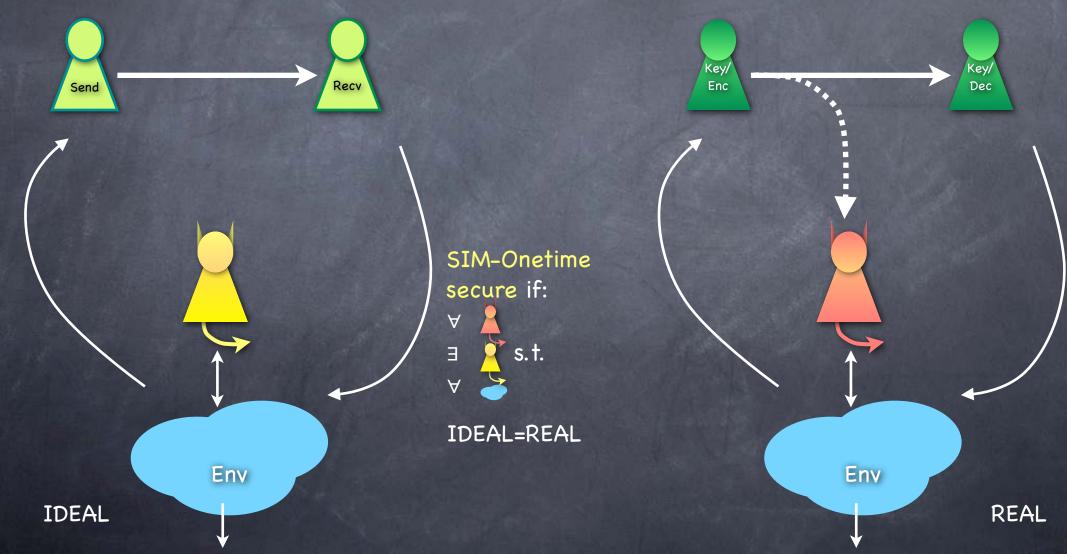
 $\forall m_0, m_1$

 $\triangle(\mathsf{Enc}(\mathsf{m}_0),\mathsf{Enc}(\mathsf{m}_1)) = 0$

Recall

Onetime Encryption Equivalent to SIM-Onetime Security Equivalent to perfect secrecy + correctness

Class of environments which send only one message



Security of Encryption

- Perfect secrecy is too strong for multiple messages (though, as we shall see later, too weak in some other respects)
 - Requires keys as long as the messages
- Relax the requirement by restricting to computationally bounded adversaries (and environments)
- Coming up: Formalizing notions of "computational" security (as opposed to perfect/statistical security)
 - Then, security definitions used for encryption of multiple messages

Symmetric-Key Encryption The Syntax

- Shared-key (Private-key) Encryption
 - Key Generation: Randomized
 - \bullet K \leftarrow %, uniformly randomly drawn from the key-space (or according to a key-distribution)
 - Encryption: Randomized
 - The Enc: $\mathcal{M} \times \mathcal{K} \times \mathcal{R} \to \mathcal{C}$. During encryption a fresh random string will be chosen uniformly at random from \mathcal{R}
 - Decryption: Deterministic
 - Dec: C×K→ M

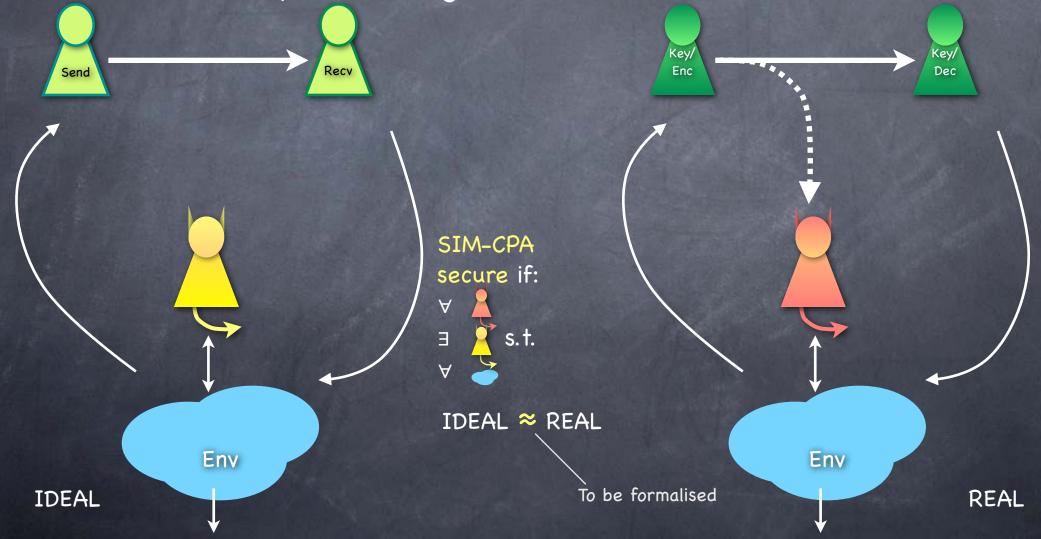
Symmetric-Key Encryption Security Definitions

Security of Encryption	Information theoretic	Game-based	Simulation-based
One-time	Perfect secrecy &	IND-Onetime & Perfect correctness	SIM-Onetime
Multi-msg		IND-CPA & correctness	SIM-CPA {today
Active/multi-msg		IND-CCA & correctness	SIM-CCA

- CPA: Chosen Plaintext Attack
 - The adversary can influence/choose the messages being encrypted
 - Note: One-time security also allowed this, but for only one message

Symmetric-Key Encryption SIM-CPA Security

Same as SIM-onetime security, but not restricted to environments which send only one message. Also, now all entities "efficient."



Symmetric-Key Encryption

IND-CPA Security

Experiment picks a random bit b. It also runs KeyGen to get a key K

- For as long as Adversary wants
 - Adv sends two messages m₀, m₁ to the experiment
 - Expt returns Enc(m_b,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- IND-CPA secure if for all "efficient" adversaries Pr[b'=b] ≈ 1/2

IND-CPA + ~correctness equivalent to Key/ SIM-CPA Enc Enc(mb,K) Mb m_0, m_1 b←{0,1} b'=b?

Almost Perfect

- For multi-message schemes we relaxed the "perfect" simulation requirement to IDEAL ≈ REAL
- In particular, we settle for "almost perfect" correctness
 - Recall perfect correctness
 - \bullet \forall m, $Pr_{K \leftarrow KeyGen, Enc}$ [Dec(Enc(m,K), K) = m] = 1
 - Almost perfect correctness: a.k.a. Statistical correctness
 - But what is ≈ ?

- In analyzing complexity of algorithms: Rate at which computational complexity grows with input size
 - e.g. Can do sorting in O(n log n)
- Only the rough rate considered
 - Exact time depends on the technology
 - Real question: Do we scale well? How much more computation will be needed as the instances of the problem get larger.
 - "Polynomial time" (O(n), O(n²), O(n³), ...) considered feasible

- "Super-Polynomial time" considered infeasible
 - ø e.g. 2ⁿ, 2√n, n^{log(n)}
 - o i.e., as n grows, quickly becomes "infeasibly large"

- Take a 256 bit integer, 11...1 = 2²⁵⁶−1
- Can a computer just count up to this number?
 - No! Not even if it runs
 - at the frequency of molecular vibrations (1014 Hz)
 - for the entire estimated lifetime of the universe (< 1018 s)
- What if you recruited every atom in the earth (≈10⁵⁰) to do the same?
 - OK, but still will get only to 10^{82} ≈ 2^{272} .
 - And even if you recruited every elementary particle in the known universe (≈10⁸⁰), only up to $10^{112} \approx 2^{372}$
- The whole known universe can't count up to a 400-bit number!

- The whole known universe can't count up to a 400-bit number!
- But we can quickly add, multiply, divide and exponentiate much larger numbers
 - Roughly, can "compute on" n-bit numbers in n or n² steps. Many important problems have such polynomial time algorithms.
- The But for some problems we don't know algorithms that do much better than 2^n , $2^{n/2}$ etc.
 - We believe for some such problems no better algorithms exist!
- We will crucially rely on such assumptions

- "Super-Polynomial time" considered infeasible
 - e.g. 2ⁿ, 2√n, n^{log(n)}
 - o i.e., as n grows, quickly becomes "infeasibly large"
- Can we make breaking security infeasible for Eve?
 - But what is n (that can grow)?
 - Message size?
 - We need security even if sending only one bit!

Security Parameter

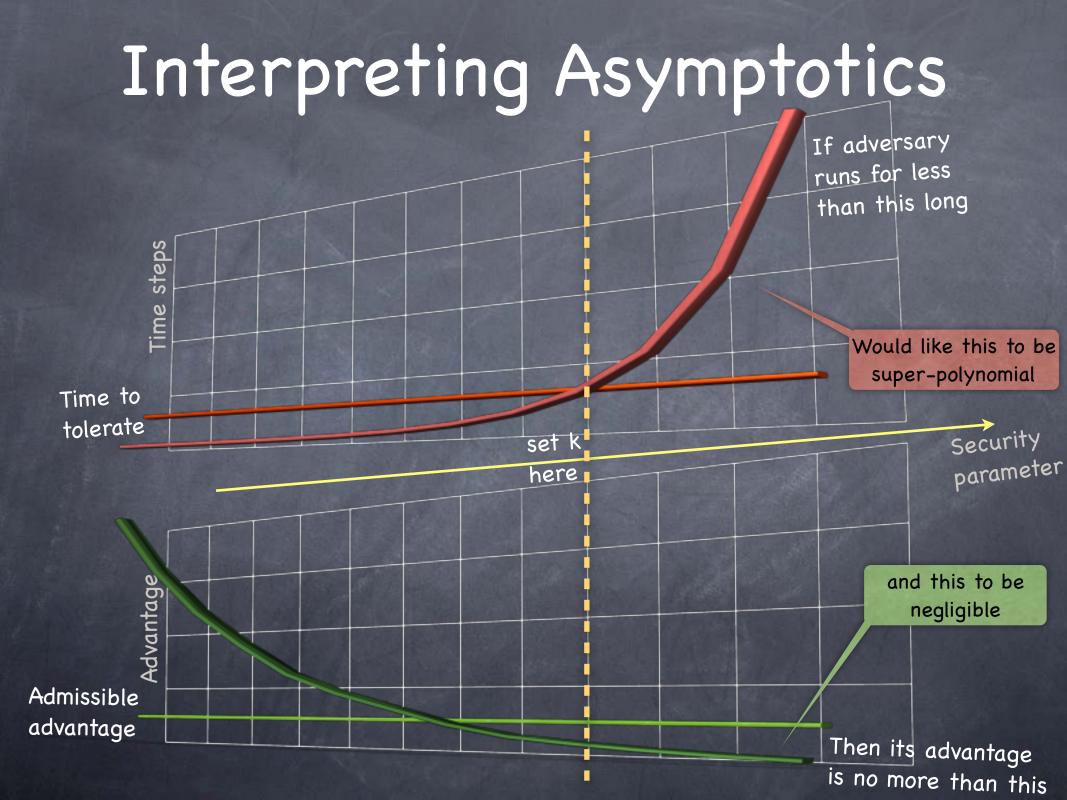
- A parameter that is part of the encryption scheme
 - Not related to message size
 - A knob that can be used to set the security level
 - Will denote by k
- Security guarantees are given <u>asymptotically</u> as a function of the security parameter

Feasible and Negligible

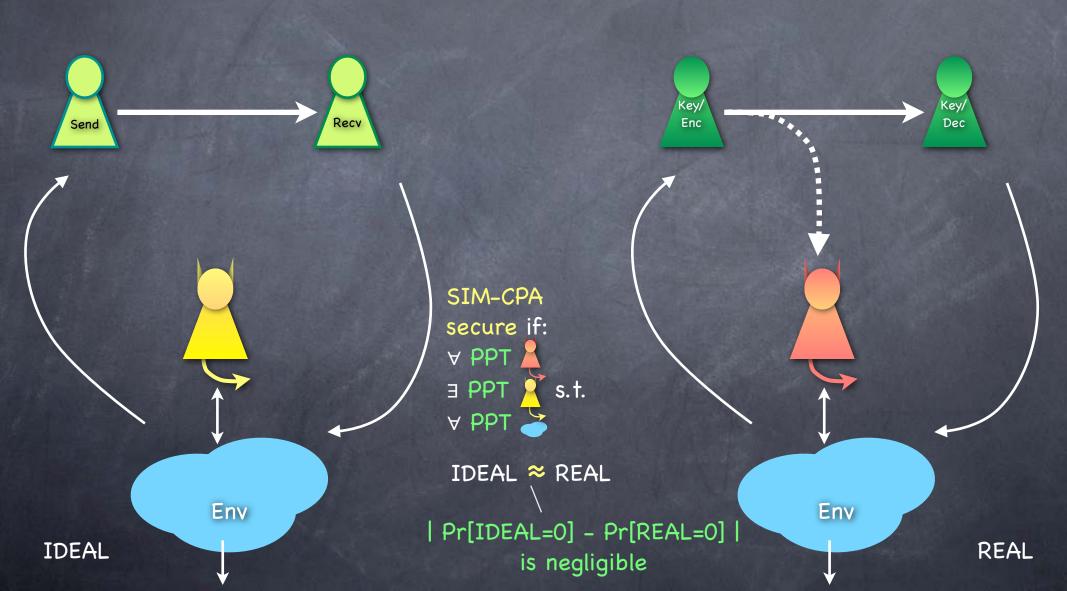
- We want to tolerate Eves who have a running time bounded by some polynomial in k
 - Eve could toss coins: Probabilistic Polynomial-Time (PPT)
 - It is better that we allow Eve high polynomial times too (we'll typically tolerate some super-polynomial time for Eve)
 - But algorithms for Alice/Bob better be very efficient
 - Eve could be non-uniform: a different strategy for each k
- Such an Eve should have only a "negligible" advantage (or, should cause at most a "negligible" difference in the behaviour of the environment in the SIM definition)
 - What is negligible?

Negligibly Small

- A negligible quantity: As we turn the knob the quantity should "decrease extremely fast"
 - Negligible: decreases as 1/superpoly(k)
 - i.e., faster than 1/poly(k) for every polynomial
 - e.g.: 2-k, 2-√k, k-(log k).
 - Tormally: T negligible if $\forall c>0 \exists k_0 \ \forall k>k_0 \ T(k) < 1/k_0$
 - So that $negl(k) \times poly(k) = negl'(k)$
 - Needed, because Eve can often increase advantage polynomially by spending that much more time/by seeing that many more messages



Symmetric-Key Encryption SIM-CPA Security



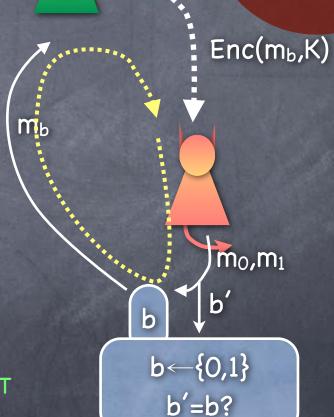
Symmetric-Key Encryption

IND-CPA Security

Experiment picks a random bit b. It also runs KeyGen to get a key K

- For as long as Adversary wants
 - Adv sends two messages m₀, m₁ to the experiment
 - Expt returns Enc(mb,K) to the adversary
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- adversaries Pr[b'=b] ≈ 1/2 | Pr[b'=b] 1/2 | is negligible

IND-CPA + ~correctness equivalent to SIM-CPA



Yes/No

Key/

Enc

Next

- Constructing (CPA-secure) SKE schemes
 - From a Pseudorandom Function (PRF)
 - And how to construct PRFs?
 - In theory, from a Pseudorandomness Generator (PRG), in turn constructed from any One-Way Function (or more easily from One-Way Permutations)
 - In practice, "block-ciphers"