
Symmetric-Key Encryption:
constructions

Lecture 4

PRG, PRF

Stream and Block Ciphers

Story So Far
We defined (passive) security of Symmetric Key Encryption (SKE)

SIM-CPA = IND-CPA + (almost perfect) correctness

Restricts to PPT entities

Allows negligible advantage to the adversary

Today:

One-time SKE from Pseudorandomness Generators (PRG)

Multi-message SKE from (Weak) Pseudorandom Functions (PRF)

Later:

How to build PRGs and PRFs, in theory and in practice

In particular when the output is required to be very long

Constructing SKE schemes

Basic idea: Use pseudo-random one-time pads (kept compressed
in the key)

“PRG”: an algorithm to stretch keys into long pseudo-random
strings

For multiple message encryption, will also need a mechanism to
ensure that the same piece of the one-time pad is not used
more than once

Implemented using a “PRF”

Expand a short random seed to a “random-looking” string

First, PRG with fixed stretch: Gk: {0,1}k ³ {0,1}n(k), n(k) > k

How does one define random-looking?

Next-Bit Unpredictability: PPT adversary can’t predict ith bit
of a sample from its first (i-1) bits (for every i * {1,...,n})

A “more correct” definition:

PPT adversary can’t distinguish between a sample from
{Gk(x)}x±{0,1}k and one from {0,1}n(k)

Turns out they are equivalent!

Pseudorandomness
Generator (PRG)

| Pry±PRG[A(y)=0] - Pry±rand[A(y)=0] |
is negligible for all PPT A

Computational
Indistinguishability

Two distribution ensembles {Xk} and {X’k} are said to be

computationally indistinguishable if

" (non-uniform) PPT distinguisher D, # negligible ¿(k) such
that | Prx±Xk[D(x)=1] - Prx±X’k[D(x)=1] | f ¿(k)

cf.: Two distribution ensembles {Xk} and {X’k} are said to be

statistically indistinguishable if " functions T, # negligible ¿(k)
s.t. | Prx±Xk[T(x)=1] - Prx±X’k[T(x)=1] | f ¿(k)

Equivalently, # negligible ¿(k) s.t. �(Xk,X’k) f ¿(k) where
�(Xk,X’k) := max T | Prx±Xk[T(x)=1] - Prx±X’k[T(x)=1] |

Xk jX’k

Pseudorandomness
Generator (PRG)

Takes a short seed and (deterministically) outputs a long string

Gk: {0,1}k³{0,1}n(k) where n(k) > k

Security definition: Output distribution induced by random input
seed should be “pseudorandom”

i.e., Computationally indistinguishable from uniformly random

{Gk(x)}x±{0,1}k j Un(k)

Note: {Gk(x)}x±{0,1}k cannot be statistically indistinguishable
from Un(k) unless n(k) f k (Exercise)

i.e., no PRG against unbounded adversaries

Pseudorandom ⇒ NBU:

Reduction: Given a PPT adversary B (for NBU), will show how to
turn it into a PPT adversary A (for Pseudorandomness) with
similar advantage. Hence the advantage must be negligible.

Could be seen as showing the contrapositive: ¬NBU ⇒ ¬Pseudorandom

For any PPT B and i, consider PPT A which uses it to predict ith
bit and then checks if the prediction was correct

Formally, A(y) outputs B(y1
i-1) · yi (i as specified by B). Then:

| Pry±PRG[A(y)=0] - Pry±rand[A(y)=0] | = | Pry±PRG[B(y1
i-1) = yi] - ½ |

Equivalent definitions
| Pry±PRG[A(y)=0] - Pry±rand[A(y)=0] |

is negligible for all PPT A
| Pry±PRG[B(y1

i-1) = yi] - ½ | is

negligible for all i, all PPT B

Next-Bit Unpredictable ⇔ Pseudorandom

NBU ⇒ Pseudorandom: Using a Hybrid Argument

Define distributions Hi over n-bit strings: y ± PRG. Output y1
i || r

where r is n-i independent uniform bits. H0 = rand, Hn = PRG.

PRG is NBU ⇒ Hi j Hi+1 : Given a PPT distinguisher A for Hi vs.

Hi+1, let PPT predictor B be as follows: On input z * {0,1}i, pick
b± {0,1}, r ± {0,1}n-i-1 and output A(z || b || r) · b. Then [Exercise] :

|Pry±PRG[B(y1
i-1) = yi] - ½| = |Pry±Hi[A(y)=0] - Pry±Hi+1[A(y)=0]|

Then [Exercise] : H0 j Hn (for n(k) that is polynomial)

Equivalent definitions
| Pry±PRG[A(y)=0] - Pry±rand[A(y)=0] |

is negligible for all PPT A
| Pry±PRG[B(y1

i-1) = yi] - ½ | is

negligible for all i, all PPT B

Next-Bit Unpredictable ⇔ Pseudorandom

One-time secure SKE
with a Stream-Cipher

One-time Encryption with a stream-cipher:

Generate a one-time pad from a short seed

Can share just the seed as the key

Mask message with the pseudorandom pad

Decryption is symmetric: plaintext & ciphertext interchanged

SC can spit out bits on demand, so the message can arrive bit by
bit, and the length of the message doesn’t have to be a priori
fixed

Security: indistinguishability from using a truly random pad
(coming up)

SC ·K

m

Enc
(stream)

Stream Ciphers
Stream ciphers in practice

Naturally useful for onetime (stream) encryption, in
protocols where a key is established per session

Many popular candidates:

RC4: Obsolete (but popular). Designed in 1987. Leaked (and
broken) in 1994. Still used in BitTorrent, and supported as
an option in some protocols.

eSTREAM portfolio:

NIST recommendation: AES in an appropriate mode (later)

SCK

Profile 1

(software)
HC-128, Rabbit, Salsa20/12, SOSEMANUK 128 bit keys

Profile 2

(hardware)
Grain, MICKEY, Trivium 80 bit keys

One-time secure SKE
with a Stream-Cipher

One-time Encryption with a stream-cipher:

Generate a one-time pad from a short seed

Can share just the seed as the key

Mask message with the pseudorandom pad

Decryption is symmetric: plaintext & ciphertext interchanged

SC can spit out bits on demand, so the message can arrive bit by
bit, and the length of the message doesn’t have to be a priori
fixed

SIM-CPA security due to indistinguishability from using a truly
random pad

SC ·K

m

Enc
(stream)

One-time secure SKE
with a Stream-Cipher

In IDEAL experiment, consider simulator that
uses a truly random string as the ciphertext

To show REAL j IDEAL

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad,
instead of the output from the stream-cipher

HYBRID = IDEAL (recall perfect security of one-time pad)

Claim: REAL j HYBRID

Consider the experiments as a system that accepts the pad
from outside (R’ = SC(K) for a random K, or truly random R)
and outputs the environment’s output. This system is PPT,
and so can’t distinguish pseudorandom from random.

SC ·K

m

Enc
(stream)

One-time secure SKE
with a Stream-Cipher

REAL

Env

PRG

j

Env

Rand

HYBIRD

Recap

One-time pad provides perfect secrecy

Key = a random string as long as the message

Major limitation: Cannot communicate
indefinitely using a given key

Stream cipher provides (only) computational secrecy

Key = seed of a PRG, used to generate as long a
pseudorandom one-time pad as needed

Major limitation: Only one output stream. And
receiver needs to stay in sync with the sender.

Fix: use a Psuedorandom Function (PRF)
instead of a PRG

(stream)

SC ·K

m

Enc

SC ·
K

Dec m

PRG

Pseudorandom Function
(PRF)

A compact representation of an exponentially long
(pseudorandom) string

Allows “random-access” (instead of just sequential access)

A function F(s;i) outputs the ith block of the
pseudorandom string corresponding to seed s

Exponentially many blocks (i.e., large domain for i)

Pseudorandom Function

Need to define pseudorandomness for a function (not a
string)

Fs

R

MUX

Pseudorandom Function
(PRF)

F: {0,1}k×{0,1}m ³{0,1}n is a PRF if all PPT
adversaries have negligible advantage in
the PRF experiment

Adversary given oracle access to either
F with a random seed, or a random
function R: {0,1}m ³{0,1}n. Needs to
guess which.

Note: Only 2k seeds for F

But 2^(n2m) functions R

PRF stretches k bits to n2m bits

b’

Yes/No

b

b±{0,1}

b’=b?

Pseudorandom Function
(PRF)

Not blazing fast: needs |r| evaluations of a PRG

Faster constructions based on specific number-theoretic
computational complexity assumptions

Fast heuristic constructions

PRF in practice: Block Cipher

Extra features/requirements:

Permutation: input block (r) to output block

Key can be used as an inversion trapdoor

Pseudorandomness even with access to inversion

BC
K

r

A PRF can be constructed from any PRG

SKE with a PRF
(or Block Cipher)

Suppose Alice and Bob have shared a key (seed)
for a block-cipher (or PRF) BC

For each encryption, Alice will pick a fresh
pseudorandom pad, by picking a new value r and
setting pad=BCK(r)

Bob needs to be able to generate the same pad,
so Alice sends r (in the clear, as part of the
ciphertext) to Bob

Even if Eve sees r, PRF security guarantees that
BCK(r) is pseudorandom

How to pick a new r?

Pick at random!

BC ·
K

m

(a block)Enc

r

BC ·
K

Dec m

Recap
One-time pad provides perfect secrecy

Major limitation: Cannot communicate
indefinitely using a given key

Stream cipher (PRG) gives computational secrecy

Major limitation: Receiver needs to stay in sync
with the sender.

Can use a block cipher (PRF suffices)

Limitation: To encrypt one block of message,
two blocks of ciphertext

Next up: More efficient ways (modes) of
using a block cipher for encryption

Later: Constructions for PRG and PRF

BC ·
K

m

(a block)Enc

r

BC ·
K

Dec m

