
Public-Key Cryptography
Lecture 7


Public-Key Encryption

Diffie-Hellman Key-Exchange 

El Gamal Encryption



PKE scheme
SKE:


Syntax


KeyGen outputs      
K ± K


Enc: M ×K ×R ³C


Dec: C ×K ³ M  

Correctness


"K * Range(KeyGen), 
Dec( Enc(m,K), K) = m


Security (SIM/IND-CPA)

PKE


Syntax


KeyGen outputs            
(PK,SK) ± PK ×SK


Enc: M ×PK ×R ³C


Dec: C ×SK ³ M  

Correctness


"(PK,SK) * Range(KeyGen), 
Dec( Enc(m,PK), SK) = m


Security (SIM/IND-CPA, 
PKE version)

Shared/Symmetric-Key 
Encryption  

(a.k.a. private-key 
encryption)

a.k.a. asymmetric-key encryption



SIM-CPA (PKE Version)
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IND-CPA (SKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key K


For as long as Adversary wants


Adv sends two messages m0, m1  
to the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 f ¿(k)
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Then no need 
for multiple 
challenges! 

 [Via hybrids]



IND-CPA (SKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key (PK,SK). Adv 
given PK


Adv sends two messages m0, m1 to 
the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 f ¿(k)
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b±{0,1}

b’=b?

IND-CPA (PKE version)
Experiment picks a random bit b. It also 
runs KeyGen to get a key (PK,SK). Adv 
given PK


Adv sends two messages m0, m1 to 
the experiment


Expt returns Enc(mb,K) to the 
adversary


Adversary returns a guess b’


Experiment outputs 1 iff b’=b


IND-CPA secure if for all PPT 
adversaries  Pr[b’=b] - 1/2 f ¿(k)

PK

Enc

m0,m1

mb

Enc(mb,PK)

b’

Yes/No

PK

b’=b?

IND-CPA + 
~correctness 

equivalent to 

SIM-CPA



Perfect Secrecy?

No perfectly secret and correct PKE (even for one-time encryption)


Public-key and ciphertext (the total shared information between 
Alice and Bob at the end) should together have entire 
information about the message


Intuition: If Eve thinks Bob could decrypt it as two messages 
based on different SKs, Alice should be concerned too


i.e., Alice conveys same information to Bob and Eve


PKE only with computational security Unless assumptions 
of imperfect 
eavesdropping



Diffie-Hellman        
Key-exchange

A candidate for how Alice and Bob could generate a 
shared key, which is “hidden” from Eve

Random x
X

Random y
Y

X=gx

Output Yx Output Xy

Y=gy

gx, gy

gxy ??



Why DH-Key-exchange 
could be secure

Given gx, gy for random x, y, gxy should be “hidden”


i.e., could still be used as a pseudorandom element


i.e., (gx, gy, gxy) j (gx, gy, R)


Is that reasonable to expect?


Depends on the “group”



A group (G, ÿ) specified by a set G (for us finite, unless 
otherwise specified) and a “group operation” ÿ that is 
associative, has an identity, is invertible, and (for us) commutative 


Examples: Z = (integers, +) (this is an infinite group), 

ZN = (integers modulo N, + mod N), 

Gn = (Cartesian product of a group G, coordinate-wise operation)


Order of a group G: |G| = number of elements in G


For any a*G,  a|G| = aÿaÿ...ÿa (|G| times) = identity


Finite Cyclic group (in multiplicative notation): there 
is one element g such that G = {g0, g1, g2, ... g|G|-1}


Prototype: ZN (additive group), with g=1


or any d s.t. gcd(d,N) = 1

Groups, by examples
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theorem



We need groups with efficient algorithms to work on them


An ensemble of groups, indexed by security parameter


Group generation: Given a security parameter, output a 
group G and a generator for it, g


Elements of G should have (about) k-bit representation


Note: |G| can be exponentially large in k


G has polynomial time algorithms for adding, inverting and 
randomly sampling a group element

Computing on a Group



Discrete Log (w.r.t g) in a (multiplicative) cyclic group G generated 
by g: DLg(X) := unique x such that X = gx  (x * {0,1,...,|G|-1})


In a (computationally efficient) group, given integer x and the 
standard representation of a group element g, can efficiently find 
the standard representation of X=gx (How?)


But given X and g, may not be easy to find x (depending on G)


DLA: Every PPT Adv has negligible success probability in the    
DL Expt: (G,g)±GroupGen; X±G; Adv(G,g,X)³z; gz=X?


If DLA broken, then Diffie-Hellman key-exchange broken


Eve gets x, y from gx, gy (sometimes) and can compute gxy herself


A “key-recovery” attack


Note: could potentially break pseudorandomness without breaking 
DLA too

Discrete Log Assumption Repeated 
squaring

OWF: 
Raise(x;G,g) 
 = (gx;G,g)



Decisional Diffie-Hellman 
(DDH) Assumption

{(gx, gy, gxy)}(G,g)±GroupGen; x,y±[|G|]  j {(gx, gy, gr)}(G,g)±GroupGen; x,y,r±[|G|]


At least as strong as DLA


If DDH assumption holds, then DLA holds [Why?]


But possible that DLA holds and DDH assumption doesn’t


e.g.: DLA is widely believed to hold in Zp* (p prime), but DDH 

assumption doesn’t hold there! 

DH Key exchange is secure (against an eavesdropper) iff the 
DDH assumption holds in the group used

Group elements are non-zero elements mod p 
and group operation is multiplication mod p

Security definition here is simply that  
(transcript, generated key) j (transcript, random key)



El Gamal Encryption
Based on DH key-exchange


Alice, Bob generate a key 
using DH key-exchange


Then use it as a one-time pad 
for messages in the group


Bob’s “message” in the key-
exchange is his PK


Alice’s message in the key-
exchange and the ciphertext of 
the one-time pad together form 
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)


  Enc(G,g,Y)(M) = (X=gx, C=MYx)


  Dec(G,g,y)(X,C) = CX-y


• KeyGen uses GroupGen to get (G,g)


• x, y uniform from Z|G|


• Message encoded into group element, and  
decoded



Security of El Gamal
El Gamal is IND-CPA secure if DDH holds (for the collection of 
groups used)


Construct a DDH adversary A* given an IND-CPA adversary A


A*(G,g; gx,gy,gz)  (where (G,g) ± GroupGen, x,y random and      
z=xy or random) plays the IND-CPA experiment with A:


But sets PK=(G,g,gy) and Enc(Mb)=(gx,Mbgz)


Outputs 1 if experiment outputs 1 (i.e. if b=b’)


When z=random, A* outputs 1 with probability = 1/2


When z=xy, exactly IND-CPA experiment: A* outputs 1 with 
probability = 1/2 + advantage of A.



El Gamal Encryption
Based on DH key-exchange


Alice, Bob generate a key 
using DH key-exchange


Then use it as a one-time pad 
for messages in the group


Bob’s “message” in the key-
exchange is his PK


Alice’s message in the key-
exchange and the ciphertext of 
the one-time pad together form 
a single ciphertext

C=MK

Random x
X

X=gx

K=Yx K=Xy

Random yY
Y=gy

C

M=CK-1

KeyGen: PK=(G,g,Y), SK=(G,g,y)


  Enc(G,g,Y)(M) = (X=gx, C=MYx)


  Dec(G,g,y)(X,C) = CX-y


• KeyGen uses GroupGen to get (G,g)


• x, y uniform from Z|G|


• Message encoded into group element, and  
decoded

Alternately, convert the key K into a pseudorandom  
bit string using a “Key Derivation Function”


