Hash Functions

Lecture 9
Flavours of collision resistance

A Tale of Two Boxes

- The bulk of today's applied cryptography works with two magic boxes
 - Block Ciphers
 - Hash Functions
- Block Ciphers: Best modeled as (strong) Pseudorandom Permutations, with inversion trapdoors
 - Often more than needed (e.g. SKE needs only PRF)
- Hash Functions:
 - Some times modelled as Random Oracles!
 - Use at your own risk! No guarantees in the standard model.
 - Today: understanding security requirements on hash functions

Hash Functions

- "Randomised" mapping of inputs to shorter hash-values
- Hash functions are useful in various places
 - In data-structures: for efficiency
 - Intuition: hashing removes worst-case effects
 - In cryptography: for "integrity"
- Primary use: Domain extension (compress long inputs, and feed them into boxes that can take only short inputs)
 - Typical security requirement: "collision resistance"
 - Different flavours: some imply one-wayness
 - Also sometimes: some kind of unpredictability

Hash Function Family

- **⊘** Hash function h: $\{0,1\}^{n(k)} \rightarrow \{0,1\}^{t(k)}$
 - Compresses
- A family
 - Alternately, takes two inputs, the index of the member of the family, and the real input
- Efficient sampling and evaluation
- Idea: when the hash function is randomly chosen, "behaves randomly"
 - Main goal: to "avoid collisions".
 Will see several variants of the problem

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
000	0	0	0	1
001	0	0	1	1
010	0	1	0	1
011	0	1	1	0
100	1	0	0	1
101	1	0	1	0
110	1	1	0	1
111	1	1	1	0

Hash Functions in Crypto Practice

- A single fixed function
 - e.g. SHA-3, SHA-256, SHA-1, MD5, MD4
 - Not a family ("unkeyed")
 - (And no security parameter knob)
- Not collision-resistant under any of the following definitions
- Alternately, could be considered as having already been randomly chosen from a family (and security parameter fixed too)
 - Usually involves hand-picked values (e.g. "I.V." or "round constants") built into the standard

Degrees of Collision-Resistance

- If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow #: Combinatorial Hash Functions (even non-PPT A)
 - \bullet A \rightarrow x; h \leftarrow \$!; A(h) \rightarrow y: Universal One-Way Hash Functions
 - \bullet h $\leftarrow \mathcal{U}$; A(h) \rightarrow (x,y): Collision-Resistant Hash Functions
- CRHF the strongest. UOWHF of theoretical interest (powerful enough for digital signatures, and can be based on OWF alone).
- Useful variants: A gets only oracle access to $h(\cdot)$ (weaker). Or, A gets any coins used for sampling h (stronger).

Degrees of Collision-Resistance

- Variants of CRHF where x is random
 - \bullet h \leftarrow \cancel{t} ; x \leftarrow X; A(h,h(x)) \rightarrow y (y=x allowed)

A.k.a One-Way Hash Function

- Pre-image collision resistance if h(x)=h(y) w.n.p
- i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)
- h←♯; x←X; A(h,x)→y (y≠x)
 - Second Pre-image collision resistance if h(x)=h(y) w.n.p
- Incomparable (neither implies the other) [Exercise]
- CRHF implies second pre-image collision resistance and, if compressing, then pre-image collision resistance [Exercise]

Hash Length

- If range of the hash function is too small, not collision-resistant
 - If range poly(k)-size (i.e. hash is logarithmically long), then non-negligible probability that two random x, y provide collision
- In practice interested in minimising the hash length (for efficiency)
 - Generic attack on a CRHF: birthday attack
 - Look for a collision in a set of random inputs (needs only oracle access to the hash function)
 - Expected size of the set before collision: O(√|range|)
 - Birthday attack effectively halves the security (hash length) of a CRHF compared to a generic attack on UOWHF

Universal Hashing

- **⊘** Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"

 - $\forall x \neq y, w, z \ Pr_{h \leftarrow \mathcal{U}} [h(x) = w, h(y) = z] =$ $Pr_{h \leftarrow \mathcal{U}} [h(x) = w] \cdot Pr_{h \leftarrow \mathcal{U}} [h(y) = z]$

×	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

$$\Rightarrow \forall x \neq y \Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$$

Negligible collision-probability if super-polynomial-sized range

- k-Universal:
 - $\forall x_1..x_k$ (distinct), $z_1..z_k$, $Pr_{h \leftarrow \mathcal{U}} [\forall i \ h(x_i) = z_i] = 1/|Z|^k$
- Inefficient example:
 # set of all functions from X to Z
 - But we will need all h∈𝓜 to be succinctly described and efficiently evaluable

Universal Hashing

- © Combinatorial HF: $A \rightarrow (x,y)$; $h \leftarrow \#$. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - - $\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

-	0 0 h	()	= ax+b	lin a	£n:+a	Cald	V 71
0	e.q. no	1,b(X) :	= UX+D	(III a	пппе	nela,	ヘ=ムノ

Uniform

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

•
$$Pr_{a,b} [ax+b=z] = Pr_{a,b} [b=z-ax] = 1/|Z|$$

- $Pr_{a,b}$ [ax+b = w, ay+b = z] = ? In a field, exactly one (a,b) satisfying the two equations (for $x \neq y$)
 - \circ Pr_{a,b} [ax+b = w, ay+b = z] = $1/|Z|^2$
- But does not compress!

Universal Hashing

- Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- Even better: 2-Universal Hash Functions
 - "Uniform" and "Pairwise-independent"
 - - $\Rightarrow \forall x \neq y \ Pr_{h \leftarrow \mathcal{U}} [h(x) = h(y)] = 1/|Z|$

ø e.g.	Chop	(h(x))) where
--------	------	--------	---------

0	h	from	a ((possibly	non-compressing)	
	2.	-unive	erso	al HF		

- Chop a t-to-1 map from Z to Z'
- e.g. with $|Z|=2^k$, removing last bit gives a 2-to-1 mapping

\circ Pr _h [Chop(h(x)) = w, Chop(h(y)) = z]	
$= Pr_h [h(x) = w0 or w1, h(y) = z0 or z1]$	$= 4/ Z ^2 = 1/ Z' ^2$

X	h ₁ (x)	h ₂ (x)	h ₃ (x)	h ₄ (x)
0	0	0	1	1
1	0	1	0	1
2	1	0	0	1

Negligible collision-probability if super-polynomial-sized range

Cryptographic Hash Functions

- Combinatorial collision resistance depended on the hash function being randomly chosen after (independent of) adversary's pair (x,y)
- But if the hash function is known first, adversary can find collisions
- Often the hash function does have to be public
- Solution: OK if finding collisions is computationally infeasible
 - Cryptographic hash-functions
 - CRHF (and UOWHF)

CRHF: In Theory

- © Collision-Resistant HF: $h \leftarrow \#$; $A(h) \rightarrow (x,y)$. h(x)=h(y) w.n.p
- Not known to be possible from OWF/OWP alone
 - "Impossibility" (blackbox-separation) known
- Possible from "claw-free pair of permutations"
 - In turn from hardness of discrete-log, factoring, and from lattice-based assumptions
- Also from "homomorphic one-way permutations", and from homomorphic encryptions
- These candidates use mathematical operations that are fairly expensive (comparable to public-key encryption)

CRHF: In Theory

- CRHF from discrete log assumption:
 - Suppose \mathbb{G} a group of prime order q, where DL is considered hard (e.g. \mathbb{QR}_p^* for p=2q+1 a safe prime i.e., q prime)
 - $h_{g1,g2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in •) where g_1 , $g_2 \neq 1$ (hence generators)
 - A collision: $(x_1,x_2) \neq (y_1,y_2)$ s.t. $h_{g1,g2}(x_1,x_2) = h_{g1,g2}(y_1,y_2)$
 - Collision $\Rightarrow x_1 \neq y_1$ and $x_2 \neq y_2$ [Why?]
 - Then $g_2 = g_1^{(x_1-y_1)/(x_2-y_2)}$ (exponents in \mathbb{Z}_q^*)
 - i.e., w.r.t. a random base g_1 , can compute DL of a random element g_2 . Breaks DL!
 - Hash halves the size of the input

Domain Extension

h_k

 h_{k-1}

 h_{k-2}

h₁

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - So far, UOWHF/CRHF which have a fixed domain
- First, simpler goal: extend to a larger, fixed domain
 - Assume we are given a hash function from two blocks to one block (a block being, say, k bits)
 - What if we can compress only slightly say, by one bit?
 - Can just apply repeatedly to compress by k bits

CRHF Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

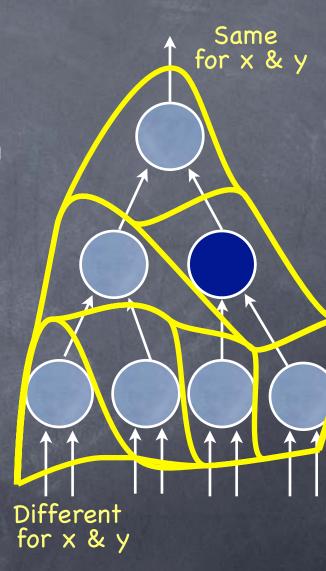
First, simpler goal: extend to a larger, fixed domain

© Can compose hash functions more efficiently, using a "Merkle tree"

- Uses a basic hash from {0,1}^{2k} to {0,1}^k
- Example: A hash function from {0,1}^{8k} to {0,1}^k using a tree of depth 3
- Any tree can be used, with consistent I/O sizes
- Same basic hash used at every node in the Merkle tree. Hash description same as for a single basic hash

Domain Extension for CRHF

- If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision (x',y') for basic hash
 - Consider moving a "frontline" from bottom to top. Look for equality on this front.
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash
- \bullet A*(h): run A(h) to get (x₁...x_n), (y₁...y_n). Move frontline to find (x',y')



Domain Extension for CRHF

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - Merkle-Tree construction extends the domain to any fixed input length
- Hash the message length (number of blocks) along with the original hash
 - Collision in the new hash function gives either collision at the top level, or if not, collision in the original Merkle tree and for the same message length

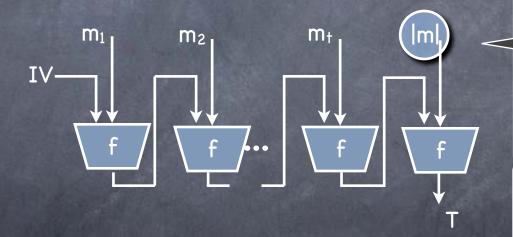
|m|

CRHF in Practice

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often based on a fixed input-length compression function

Merkle-Damgård iterated hash function, MDf:



Collision resistance even with variable input-length.

Note: Unlike CBC-MAC, here "length-extension" is OK, as long as it results in a different hash value

If f is not keyed, but "concretely" collision resistant, so is MD^f

If f "concretely" collision resistant then so is MDf (for any IV)

Today

- Combinatorial hash functions, UOWHF and CRHF
 - (And weaker variants of CRHF: pre-image collision resistance and second-pre-image collision resistance)
- Collision-resistant combinatorial HF from 2-Universal Hash Functions
- A candidate CRHF construction based on Discrete Log assumption
- Domain extension: Merkle Tree, Merkle-Damgård iterated hash