
Hash Functions
Lecture 9

Flavours of collision resistance

A Tale of Two Boxes
The bulk of today’s applied cryptography works with two
magic boxes

Block Ciphers

Hash Functions

Block Ciphers: Best modeled as (strong) Pseudorandom
Permutations, with inversion trapdoors

Often more than needed (e.g. SKE needs only PRF)

Hash Functions:

Some times modelled as Random Oracles!

Use at your own risk! No guarantees in the standard model.

Today: understanding security requirements on hash functions

Hash Functions
“Randomised” mapping of inputs to shorter hash-values

Hash functions are useful in various places

In data-structures: for efficiency

Intuition: hashing removes worst-case effects

In cryptography: for “integrity”

Primary use: Domain extension (compress long inputs, and
feed them into boxes that can take only short inputs)

Typical security requirement: “collision resistance”

Different flavours: some imply one-wayness

Also sometimes: some kind of unpredictability

Hash Function Family
Hash function h:{0,1}n(k)³{0,1}t(k)

Compresses

A family

Alternately, takes two inputs,
the index of the member of the
family, and the real input

Efficient sampling and evaluation

Idea: when the hash function is
randomly chosen, “behaves
randomly”

Main goal: to “avoid collisions”.
Will see several variants of the
problem

x h1(x) h2(x) h3(x) h4(x) hN(x)

000 0 0 0 1 ... 1

001 0 0 1 1 1

010 0 1 0 1 1

011 0 1 1 0 1

100 1 0 0 1 1

101 1 0 1 0 1

110 1 1 0 1 1

111 1 1 1 0 1

Hash Functions in Crypto
Practice

A single fixed function

e.g. SHA-3, SHA-256, SHA-1, MD5, MD4

Not a family (“unkeyed”)

(And no security parameter knob)

Not collision-resistant under any of the following definitions

Alternately, could be considered as having already been randomly
chosen from a family (and security parameter fixed too)

Usually involves hand-picked values (e.g. “I.V.” or “round
constants”) built into the standard

Degrees of
Collision-Resistance

If for all PPT A, Pr[xby and h(x)=h(y)] is negligible in the
following experiment:

A³(x,y); h±H : Combinatorial Hash Functions (even non-PPT A)

A³x; h±H; A(h)³y : Universal One-Way Hash Functions

h±H; A(h)³(x,y) : Collision-Resistant Hash Functions

CRHF the strongest. UOWHF of theoretical interest (powerful
enough for digital signatures, and can be based on OWF alone).

Useful variants: A gets only oracle access to h(ç) (weaker).
Or, A gets any coins used for sampling h (stronger).

Degrees of
Collision-Resistance

Variants of CRHF where x is random

h±H; x±X; A(h,h(x))³y (y=x allowed)

Pre-image collision resistance if h(x)=h(y) w.n.p

i.e., f(h,x) := (h,h(x)) is a OWF (and h compresses)

h±H; x±X; A(h,x)³y (ybx)

Second Pre-image collision resistance if h(x)=h(y) w.n.p

Incomparable (neither implies the other) [Exercise]

CRHF implies second pre-image collision resistance and, if
compressing, then pre-image collision resistance [Exercise]

A.k.a One-Way
Hash Function

Hash Length

If range of the hash function is too small, not collision-resistant

If range poly(k)-size (i.e. hash is logarithmically long), then
non-negligible probability that two random x, y provide collision

In practice interested in minimising the hash length (for efficiency)

Generic attack on a CRHF: birthday attack

Look for a collision in a set of random inputs (needs only
oracle access to the hash function)

Expected size of the set before collision: O(:|range|)

Birthday attack effectively halves the security (hash length) of
a CRHF compared to a generic attack on UOWHF

Universal Hashing

k-Universal:

"x1..xk (distinct), z1..zk, Prh±H	["i h(xi)=zi] = 1/|Z|k

Inefficient example: H set of all functions from X to Z

But we will need all h*H to be succinctly described and
efficiently evaluable

x h1(x) h2(x) h3(x) h4(x)

0 0 0 1 1

1 0 1 0 1

2 1 0 0 1

Combinatorial HF: A³(x,y); h±H. h(x)=h(y) w.n.p

Even better: 2-Universal Hash Functions

“Uniform” and “Pairwise-independent”

"x,z Prh±H	[h(x)=z] = 1/|Z| (where h:X³Z)

"xby,w,z Prh±H	[h(x)=w, h(y)=z] =
 Prh±H	[h(x)=w] ç Prh±H	[h(y)=z]

⇒ "xby Prh±H	[h(x)=h(y)] = 1/|Z| Negligible collision-probability if
super-polynomial-sized range

Universal Hashing

x h1(x) h2(x) h3(x) h4(x)

0 0 0 1 1

1 0 1 0 1

2 1 0 0 1

Negligible collision-probability if
super-polynomial-sized range

e.g. ha,b(x) = ax+b (in a finite field, X=Z)

Uniform

Pra,b [ax+b = z] = Pra,b [b = z-ax] = 1/|Z|

Pra,b [ax+b = w, ay+b = z] = ? In a field, exactly one (a,b)
satisfying the two equations (for xby)

Pra,b [ax+b = w, ay+b = z] = 1/|Z|2

But does not compress!

Combinatorial HF: A³(x,y); h±H. h(x)=h(y) w.n.p

Even better: 2-Universal Hash Functions

“Uniform” and “Pairwise-independent”

"xby,w,z Prh±H	[h(x)=w, h(y)=z] = 1/|Z|2

⇒ "xby Prh±H	[h(x)=h(y)] = 1/|Z|

Universal Hashing

x h1(x) h2(x) h3(x) h4(x)

0 0 0 1 1

1 0 1 0 1

2 1 0 0 1

Negligible collision-probability if
super-polynomial-sized range

Combinatorial HF: A³(x,y); h±H. h(x)=h(y) w.n.p

Even better: 2-Universal Hash Functions

“Uniform” and “Pairwise-independent”

"xby,w,z Prh±H	[h(x)=w, h(y)=z] = 1/|Z|2

⇒ "xby Prh±H	[h(x)=h(y)] = 1/|Z|

e.g. Chop(h(x)) where

h from a (possibly non-compressing)
2-universal HF

Chop a t-to-1 map from Z to Z’

e.g. with |Z|=2k, removing last bit gives a 2-to-1 mapping

Prh [Chop(h(x)) = w, Chop(h(y)) = z]
= Prh [h(x) = w0 or w1, h(y) = z0 or z1] = 4/|Z|2 = 1/|Z’|2

Cryptographic Hash
Functions

Combinatorial collision resistance depended on the hash function
being randomly chosen after (independent of) adversary’s pair
(x,y)

But if the hash function is known first, adversary can find
collisions

Often the hash function does have to be public

Solution: OK if finding collisions is computationally infeasible

Cryptographic hash-functions

CRHF (and UOWHF)

CRHF: In Theory
Collision-Resistant HF: h±H; A(h)³(x,y). h(x)=h(y) w.n.p

Not known to be possible from OWF/OWP alone

“Impossibility” (blackbox-separation) known

Possible from “claw-free pair of permutations”

In turn from hardness of discrete-log, factoring, and
from lattice-based assumptions

Also from “homomorphic one-way permutations”, and from
homomorphic encryptions

These candidates use mathematical operations that are fairly
expensive (comparable to public-key encryption)

CRHF from discrete log assumption:

Suppose G a group of prime order q, where DL is considered

hard (e.g. QRp* for p=2q+1 a safe prime — i.e., q prime)

hg1,g2(x1,x2) = g1x1g2x2 (in G) where g1, g2 b 1 (hence generators)

A collision: (x1,x2) b (y1,y2) s.t. hg1,g2(x1,x2)= hg1,g2(y1,y2)

Collision ⇒ x1by1 and x2by2 [Why?]

Then g2 = g1 (x1-y1)/(x2-y2) (exponents in Zq*)

i.e., w.r.t. a random base g1, can compute DL of a
random element g2. Breaks DL!

Hash halves the size of the input

CRHF: In Theory

Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash
value

So far, UOWHF/CRHF which have a fixed domain

First, simpler goal: extend to a larger, fixed domain

Assume we are given a hash function from two blocks to
one block (a block being, say, k bits)

What if we can compress only slightly — say, by one bit?

Can just apply repeatedly to compress by k bits h1

hk-2

hk-1

hk

Full-domain hash: hash arbitrarily long strings
to a single hash value

First, simpler goal: extend to a larger, fixed domain

Can compose hash functions more efficiently,

using a “Merkle tree”

Uses a basic hash from {0,1}2k to {0,1}k

Example: A hash function from {0,1}8k
to {0,1}k using a tree of depth 3

Any tree can be used, with consistent I/O sizes

Same basic hash used at every node in the Merkle tree.
Hash description same as for a single basic hash

CRHF Domain Extension

If a collision ((x1...xn), (y1...yn)) over all, then
some collision (x’,y’) for basic hash

Consider moving a “frontline” from bottom
to top. Look for equality on this front.

Collision at some step (different values
on ith front, same on i+1st); gives a
collision for basic hash

A*(h): run A(h) to get (x1...xn), (y1...yn). Move
frontline to find (x’,y’)

Domain Extension for CRHF

Different
 for x & y

Same
 for x & y

Full-domain hash: hash arbitrarily long strings to a
single hash value

Merkle-Tree construction extends the domain to
any fixed input length

Hash the message length (number of blocks) along
with the original hash

Collision in the new hash function gives either
collision at the top level, or if not, collision in the
original Merkle tree and for the same message
length

|m|

Domain Extension for CRHF

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often based on a fixed input-length compression function

Merkle-Damgård iterated hash function, MDf:

If f “concretely” collision resistant then so is MDf (for any IV)

CRHF in Practice

m1 m2 mt

T

...f f f f

|m|

IV

Collision resistance even
with variable input-length.

Note: Unlike CBC-MAC,

here “length-extension” is
OK, as long as it results in

a different hash value

If f is not keyed, but
“concretely” collision
resistant, so is MDf

Today

Combinatorial hash functions, UOWHF and CRHF

(And weaker variants of CRHF: pre-image collision resistance
and second-pre-image collision resistance)

Collision-resistant combinatorial HF from 2-Universal Hash
Functions

A candidate CRHF construction based on Discrete Log assumption

Domain extension: Merkle Tree, Merkle-Damgård iterated hash

