Hash Functions in Action

Lecture 10 Hashes and MAC

Hash Functions

Main syntactic feature: Variable input length to fixed length output
Primary requirement: collision-resistance
If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
A→(x,y); h←#: Combinatorial Hash Functions
A→x; h←#; A(h)→y: Universal One-Way Hash Functions

A(h)→(x,y) : Collision-Resistant Hash Functions

h←\$\mathcal{A}; A^h→(x,y) : Weak Collision-Resistant Hash Functions
 Also often required: "unpredictability"

Constructions

- 2-Universal Hash Function: e.g., $h_{a,b}(x) = chop(ax+b)$ over field GF(2ⁿ)
- So CRHF: e.g., h_{G,g1,g2}(x₁,x₂) = $g_1^{×1}g_2^{×2}$ (in G, a prime order DL group)
- CRHF in practice: e.g., SHA 256, SHA3
- SHA 256 (and many others) using a Merkle-Damgård iterated hash function, iterating a fixed input-length compression function

Another combinatorial notion of a hash function 0 Almost XOR Universal (AXU) hash function family Using hash functions for MAC One-time MAC Proper MACs (any number of times, variable length message) With a PRF GMAC (Also, recall CMAC, EMAC.) Without a PRF HMAC

XOR-Universal Hash

2-Universal hash function family XOR-Universal hash function family (range = {0,1}^k, say) ∀x≠y,z $Pr_{h \leftarrow \#}$ [h(x)⊕h(y) = z] = 1/|range| A 2UHF is an XUHF ε-Almost XOR-Universal hash function family Converse not true [Exercise] $\forall x \neq y, z$ Pr_{h←} $\# [h(x) \oplus h(y) = z] \leq ε$ • An example: For variable length input, $m = (m_1, ..., m_t)$, t k-bit blocks • m defines a polynomial P_m and $h_{\alpha}(m) = P_m(\alpha)$ Pr_{h←𝔅} [h(m)⊕h(m') = z] = Pr_{α←GF(2^k)}[∆(α) = z] ≤ degree(∆)/2^k
 where Δ is a non-zero polynomial of degree $\leq \max\{|\mathsf{m}|, |\mathsf{m}'|\}+1$

Hashes for MAC

One-time MAC With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (rⁱ₀, rⁱ₁)_{i=1..n}
 Signature for m₁...m_n be (rⁱ_{mi})_{i=1..n}
 Negligible probability that Eve can produce a signature on m'≠m

 r^{2} 0

 r_0

 r_{0}^{3}

- A much more efficient solution, using 2-UHF (and still no computational assumptions):
 - Onetime-MAC_h(M) = h(M), where h $\leftarrow \mathcal{H}$, and \mathcal{H} is a 2-UHF
 - Seeing hash of one input gives no information on hash of another value

MAC: Beyond One-Time With Combinatorial Hash Functions and PRF

 F_{K}

Fĸ

•••

h(M) not

revealed

- Recall: MACs can be based entirely on PRFs
 PRF is a MAC (on one-block messages)
 - CBC-MAC: Extends PRF to any fixed length domain
 - Can also make it work with variable input-length:
 Derive K as F_{K'}(t), where t is the number of blocks
 Or, Use first block to specify number of blocks
 Or, output not the last tag T, but F_{K'}(T), where K' is an independent key (EMAC)
 - Or, XOR last message block with another key K' (CMAC)
- Using hash & PRF (for fixed length domains):

MAC_{K,h}*(M) = PRF_K(h(M)) where h←𝔄, and 𝔄 is a 2-UHF

MAC: Beyond One-Time With Combinatorial Hash Functions and PRF O Using an ε-AXUHF & PRF (for variable length domains) MAC_{K,h}*(M) = (r, PRF_K(r)⊕h(M)) where h←𝔄, 𝔄 ε-AXUHF, r random
 • Forgery with a fresh r prevented by PRF. Forgery reusing an r requires knowing h(M)⊕h(M'), given no information about h (due to encryption with PRF) GMAC, a NIST standard: With polynomial evaluation over GF(2^k) being the ε -AXUHF Note that GMAC is randomised as it needs a nonce r But not a problem when used as part of Authenticated Encryption, which already needs a nonce Galois Counter Mode (GCM): Authenticated encryption using encrypt (AES in CTR mode) then MAC (GMAC). • Nonce r (with counter 0) used for GMAC, and $PRF_{\kappa}(r+i)$ with i> 0, for encryption. (Nonce itself is not MAC'ed.)

MAC: Beyond One-Time With Cryptographic Hash Functions

Previous solutions required pseudorandomness

What if we should base it only on fixed input-length MAC (not PRF)?

Why? "To avoid export restrictions!" (Was a consideration in the 1990's). Also security/efficiency

Candidate fixed input-length MACs in practice that do not use a block-cipher: compression functions (with key as IV)

• MAC*_{K,h}(M) = MAC_K(h(M)) where h $\leftarrow \mathcal{H}$, and \mathcal{H} a weak-CRHF

Weak-CRHFs can be based on OWF (unlike CRHF). Efficient heuristic construction from compression functions (again) h(M) may be revealed. Only oracle access to h MAC: Beyond One-Time With Cryptographic Hash Functions

K″

HMAC: Hash-based MAC

 Essentially built from a compression function f

If keys K₁, K₂ independent (called NMAC), then secure MAC if: f is a fixed input-length MAC & the Merkle-Damgård iterated-hash is a weak-CRHF

In HMAC (K₁,K₂) derived from (K',K"), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K₁, K₂ can be considered independent

M

Hash Not a Random Oracle!

- If H is a Random Oracle, then just H(K∥M) will be a MAC
- But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - Take M' = M || pad_M || X, where pad_M is a block encoding |M| (used by the Merkle-Damgård iterated-hash) and X is arbitrary. Then, can compute H(K||M') from H(K||M).
 - (That attack can be fixed by preventing extension: prefix-free encoding)
 - Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too

Today

- A CRHF candidate from DDH
- CRHF and UOWHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- Hash functions for MACs
 - Hash-then-MAC
 - So Using weak CRHF and fixed input-length MAC
 - Underlying HMAC/NMAC: compression function in an iterated-hash function assumed to be both a weak CRHF and a fixed input-length MAC
- Ø Next: Digital Signatures