
Hash Functions in Action
Lecture 10


Hashes and MAC



Main syntactic feature: Variable input length to fixed length output


Primary requirement: collision-resistance


If for all PPT A, Pr[xby and h(x)=h(y)] is negligible in the 
following experiment:


A³(x,y); h±H : Combinatorial Hash Functions


A³x; h±H; A(h)³y : Universal One-Way Hash Functions


h±H; A(h)³(x,y) : Collision-Resistant Hash Functions


h±H; Ah³(x,y) : Weak Collision-Resistant Hash Functions


Also often required: “unpredictability”
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2-Universal Hash Function: e.g., ha,b(x) = chop(ax+b) over field GF(2n)


CRHF: e.g., hG,g1,g2(x1,x2) = g1x1g2x2  (in G, a prime order DL group)


CRHF in practice: e.g., SHA 256, SHA3


SHA 256 (and many others) using a Merkle-Damgård iterated hash 
function, iterating a fixed input-length compression function
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Another combinatorial notion of a hash function


Almost XOR Universal (AXU) hash function family


Using hash functions for MAC


One-time MAC


Proper MACs (any number of times, variable length message)


With a PRF


GMAC (Also, recall CMAC, EMAC.)


Without a PRF


HMAC

Today



Recall Combinatorial HF: A³(x,y); h±H. h(x)=h(y) w.n.p


2-Universal hash function family


"xby,w,z Prh±H	[ h(x)=w, h(y)=z ] = 1/|range|2


XOR-Universal hash function family (range = {0,1}k, say)


"xby,z Prh±H	[ h(x)·h(y) = z ] = 1/|range|


·-Almost XOR-Universal hash function family


"xby,z Prh±H	[ h(x)·h(y) = z ] f ·


An example: For variable length input, m = (m1, …, mt), t k-bit blocks


h³(m) = m1 ³ + m2 ³2 + … + mt ³t  + |m| ³t+1 


m defines a polynomial Pm and h³(m) = Pm(³)


Prh±H	[ h(m)·h(m’) = z ] = Pr³±GF(2k)[�(³) = z] f degree(�)/2k 

where � is a non-zero polynomial of degree f max{|m|,|m’|}+1

XOR-Universal Hash

A 2UHF is an XUHF

Over GF(2k), addition is XOR

Converse not true 
[Exercise]



Hashes for MAC



One-time MAC 
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):


Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’bm


A much more efficient solution, using 2-UHF (and still no 
computational assumptions):


Onetime-MACh(M) = h(M), where h±H, and H is a 2-UHF


Seeing hash of one input gives no information on hash of 
another value
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MAC: Beyond One-Time 
With Combinatorial Hash Functions and PRF

Recall: MACs can be based entirely on PRFs


PRF is a MAC (on one-block messages)


CBC-MAC: Extends PRF to any fixed length domain


Can also make it work with variable input-length:

Derive K as FK’(t), where t is the number of blocks

Or, Use first block to specify number of blocks

Or, output not the last tag T, but FK’(T), where K’ is an 
independent key (EMAC)

Or, XOR last message block with another key K’ (CMAC)


Using hash & PRF (for fixed length domains):


MACK,h*(M) = PRFK(h(M)) where h±H, and H is a 2-UHF
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MAC: Beyond One-Time 
With Combinatorial Hash Functions and PRF
Using an  ·-AXUHF & PRF (for variable length domains)


MACK,h*(M) = (r, PRFK(r)·h(M)) where h±H, H ·-AXUHF, r random


Forgery with a fresh r prevented by PRF. 


Forgery reusing an r requires knowing h(M)·h(M’), given no 
information about h (due to encryption with PRF)


GMAC, a NIST standard: With polynomial evaluation over GF(2k) 
being the ·-AXUHF


Note that GMAC is randomised as it needs a nonce r


But not a problem when used as part of Authenticated 
Encryption, which already needs a nonce


Galois Counter Mode (GCM): Authenticated encryption using encrypt 
(AES in CTR mode) then MAC (GMAC). 


Nonce r (with counter 0) used for GMAC, and PRFK(r+i) with i> 0, 
for encryption. (Nonce itself is not MAC’ed.)



MAC: Beyond One-Time 
With Cryptographic Hash Functions

Previous solutions required pseudorandomness


What if we should base it only on fixed input-length MAC (not PRF)?


Why? “To avoid export restrictions!”  (Was a consideration in the 
1990’s). Also security/efficiency


Candidate fixed input-length MACs in practice that do not use a 
block-cipher:  compression functions (with key as IV)


MAC*K,h(M) = MACK(h(M)) where h±H, and H a weak-CRHF


Weak-CRHFs can be based on OWF (unlike CRHF).  
Efficient heuristic construction from compression 
functions (again)

h(M) may be 
revealed. Only 

oracle access to h



MAC: Beyond One-Time 
With Cryptographic Hash Functions

HMAC: Hash-based MAC


Essentially built from a compression 
function f


If keys K1, K2 independent (called 
NMAC), then secure MAC if: f is 
a fixed input-length MAC & the 
Merkle-Damgård iterated-hash is a 
weak-CRHF


In HMAC (K1,K2) derived from (K’,K’’), 
in turn heuristically derived from a 
single key K. If f is a (weak kind of) 
PRF K1, K2 can be considered 
independent
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Hash Not a Random Oracle!
If H is a Random Oracle, then just H(K||M) will be a MAC


But if H is a Merkle-Damgård iterated-hash function, then 
there is a simple length-extension attack for forgery


Take M’ = M || padM || X, where padM is a block encoding  
|M| (used by the Merkle-Damgård iterated-hash) and X is 
arbitrary. Then, can compute H(K||M’) from H(K||M).


(That attack can be fixed by preventing extension: 
prefix-free encoding)


Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned 
out to be flawed too



Today
A CRHF candidate from DDH


CRHF and UOWHF domain extension using Merkle trees


Merkle-Damgård iterated hash function for full-domain hash


Hash functions for MACs


Hash-then-MAC


Using weak CRHF and fixed input-length MAC


Underlying HMAC/NMAC: compression function in an 
iterated-hash function assumed to be both a weak CRHF 
and a fixed input-length MAC


GHASH


Next: Digital Signatures


