
Hash Functions in Action
Lecture 10

Hashes and MAC

Main syntactic feature: Variable input length to fixed length output

Primary requirement: collision-resistance

If for all PPT A, Pr[xby and h(x)=h(y)] is negligible in the
following experiment:

A³(x,y); h±H : Combinatorial Hash Functions

A³x; h±H; A(h)³y : Universal One-Way Hash Functions

h±H; A(h)³(x,y) : Collision-Resistant Hash Functions

h±H; Ah³(x,y) : Weak Collision-Resistant Hash Functions

Also often required: “unpredictability”

Hash Functions
Ty

pi
ca

lly

us
ed

2-Universal Hash Function: e.g., ha,b(x) = chop(ax+b) over field GF(2n)

CRHF: e.g., hG,g1,g2(x1,x2) = g1x1g2x2 (in G, a prime order DL group)

CRHF in practice: e.g., SHA 256, SHA3

SHA 256 (and many others) using a Merkle-Damgård iterated hash
function, iterating a fixed input-length compression function

Constructions

m1 m2 mt

T

...f f f f

t

IV

Another combinatorial notion of a hash function

Almost XOR Universal (AXU) hash function family

Using hash functions for MAC

One-time MAC

Proper MACs (any number of times, variable length message)

With a PRF

GMAC (Also, recall CMAC, EMAC.)

Without a PRF

HMAC

Today

Recall Combinatorial HF: A³(x,y); h±H. h(x)=h(y) w.n.p

2-Universal hash function family

"xby,w,z Prh±H	[h(x)=w, h(y)=z] = 1/|range|2

XOR-Universal hash function family (range = {0,1}k, say)

"xby,z Prh±H	[h(x)·h(y) = z] = 1/|range|

·-Almost XOR-Universal hash function family

"xby,z Prh±H	[h(x)·h(y) = z] f ·

An example: For variable length input, m = (m1, …, mt), t k-bit blocks

h³(m) = m1 ³ + m2 ³2 + … + mt ³t + |m| ³t+1

m defines a polynomial Pm and h³(m) = Pm(³)

Prh±H	[h(m)·h(m’) = z] = Pr³±GF(2k)[�(³) = z] f degree(�)/2k

where � is a non-zero polynomial of degree f max{|m|,|m’|}+1

XOR-Universal Hash

A 2UHF is an XUHF

Over GF(2k), addition is XOR

Converse not true
[Exercise]

Hashes for MAC

One-time MAC
With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

Negligible probability that Eve can produce a signature on m’bm

A much more efficient solution, using 2-UHF (and still no
computational assumptions):

Onetime-MACh(M) = h(M), where h±H, and H is a 2-UHF

Seeing hash of one input gives no information on hash of
another value

r10 r20 r30

r11 r21 r31

RE
CA

LL

MAC: Beyond One-Time
With Combinatorial Hash Functions and PRF

Recall: MACs can be based entirely on PRFs

PRF is a MAC (on one-block messages)

CBC-MAC: Extends PRF to any fixed length domain

Can also make it work with variable input-length:

Derive K as FK’(t), where t is the number of blocks

Or, Use first block to specify number of blocks

Or, output not the last tag T, but FK’(T), where K’ is an
independent key (EMAC)

Or, XOR last message block with another key K’ (CMAC)

Using hash & PRF (for fixed length domains):

MACK,h*(M) = PRFK(h(M)) where h±H, and H is a 2-UHF

m1 m2 mt

FK FK FK

· ·

T

...

h(M) not
revealed

MAC: Beyond One-Time
With Combinatorial Hash Functions and PRF
Using an ·-AXUHF & PRF (for variable length domains)

MACK,h*(M) = (r, PRFK(r)·h(M)) where h±H, H ·-AXUHF, r random

Forgery with a fresh r prevented by PRF.

Forgery reusing an r requires knowing h(M)·h(M’), given no
information about h (due to encryption with PRF)

GMAC, a NIST standard: With polynomial evaluation over GF(2k)
being the ·-AXUHF

Note that GMAC is randomised as it needs a nonce r

But not a problem when used as part of Authenticated
Encryption, which already needs a nonce

Galois Counter Mode (GCM): Authenticated encryption using encrypt
(AES in CTR mode) then MAC (GMAC).

Nonce r (with counter 0) used for GMAC, and PRFK(r+i) with i> 0,
for encryption. (Nonce itself is not MAC’ed.)

MAC: Beyond One-Time
With Cryptographic Hash Functions

Previous solutions required pseudorandomness

What if we should base it only on fixed input-length MAC (not PRF)?

Why? “To avoid export restrictions!” (Was a consideration in the
1990’s). Also security/efficiency

Candidate fixed input-length MACs in practice that do not use a
block-cipher: compression functions (with key as IV)

MAC*K,h(M) = MACK(h(M)) where h±H, and H a weak-CRHF

Weak-CRHFs can be based on OWF (unlike CRHF).
Efficient heuristic construction from compression
functions (again)

h(M) may be
revealed. Only

oracle access to h

MAC: Beyond One-Time
With Cryptographic Hash Functions

HMAC: Hash-based MAC

Essentially built from a compression
function f

If keys K1, K2 independent (called
NMAC), then secure MAC if: f is
a fixed input-length MAC & the
Merkle-Damgård iterated-hash is a
weak-CRHF

In HMAC (K1,K2) derived from (K’,K’’),
in turn heuristically derived from a
single key K. If f is a (weak kind of)
PRF K1, K2 can be considered
independent

K’’

f

IV

T

M

K’

f

IV

m1 mt

...f f f

|m|

f

K2

K1

Hash Not a Random Oracle!
If H is a Random Oracle, then just H(K||M) will be a MAC

But if H is a Merkle-Damgård iterated-hash function, then
there is a simple length-extension attack for forgery

Take M’ = M || padM || X, where padM is a block encoding
|M| (used by the Merkle-Damgård iterated-hash) and X is
arbitrary. Then, can compute H(K||M’) from H(K||M).

(That attack can be fixed by preventing extension:
prefix-free encoding)

Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned
out to be flawed too

Today
A CRHF candidate from DDH

CRHF and UOWHF domain extension using Merkle trees

Merkle-Damgård iterated hash function for full-domain hash

Hash functions for MACs

Hash-then-MAC

Using weak CRHF and fixed input-length MAC

Underlying HMAC/NMAC: compression function in an
iterated-hash function assumed to be both a weak CRHF
and a fixed input-length MAC

GHASH

Next: Digital Signatures

