Hash Functions in Action

Lecture 10
Hashes and MAC

Hash Functions

@ Main syntactic feature: Variable input length to fixed length output
@ Primary requirement: collision-resistance

@ If for all PPT A, Pr[x#y and h(x)=h(y)] is negligible in the
following experiment:

3 @ A—(x,y); h<# : Combinatorial Hash Functions

N
N
&

£> 0 A=X h¥; A(h)—y : Universal One-Way Hash Functions
A&
£l \@ h<—#; A(h)—(x,y) : Collision-Resistant Hash Functions
@ h<—#; Ah—(x,y) : Weak Collision-Resistant Hash Functions

@ Also often required: “unpredictability”

Constructions

@ 2-Universal Hash Function: e.g., hab(x) = chop(ax+b) over field GF(2n)

@ CRHF: e.g., hgg1g2(X1,x2) = giXlg2*2 (in &, a prime order DL group)

@ CRHF in practice: e.g., SHA 256, SHA3

@ SHA 256 (and many others) using a Merkle-Damgard iterated hash
function, iterating a fixed input-length compression function

my mz

vl
-

Today

@ Another combinatorial notion of a hash function
@ Almost XOR Universal (AXU) hash function family
@ Using hash functions for MAC
@ One-time MAC
@ Proper MACs (any number of times, variable length message)
@ With a PRF
@ GMAC (Also, recall CMAC, EMAC.)
@ Without a PRF
@ HMAC

d

XOR-Universal Hash

Recall Combinatorial HF: A—(x,y); h<#. h(x)=h(y) w.n.p
2-Universal hash function family

® Vx£Y,W,z Pray [h(x)=w, h(y)=z] = 1/|range|?
XOR-Universal hash function family (range = {0,1}, say)

@ vXx#y,z Prha [h(x)®h(y) = z] = 1/Irangel ﬁ A 2UHF is an XUHF |

e-Almost XOR-Universal hash function family { oo o rue ;

@ VX#Y,Z Prones [h(xX)®h(y) =z] < ¢ [Exercise] 3

An example: For variable length input, m = (my, ..., mi), t k-bit blocks
@ h,(m)=mio + maa? + .. + miat + |m| of+ {Over GF(2k), addition is XOR]

® m defines a polynomial P and h,(m) = Pm(x)

@ Pria [h(m)@h(m’) = z] = Pr,—erev[A(x) = z] < degree(A)/2k
where A is a non-zero polynomial of degree < maxiiml,|m’[}+1

One-time MAC

With 2-Universal Hash Functions

@ Trivial (very inefficient) solution (to sign a single n bit message):

rlo r‘o | r3o

@ Key: 2n random strings (each k-bit long) (Flo,ri)ien T

@ Signature for my..mn be (rimi)i-=1.n
@ Negligible probability that Eve can produce a signature on m’#m

@ A much more efficient solution, using 2-UHF (and still no
computational assumptions):

@ Onetime-MACL(M) = h(M), where h<#, and & is a 2-UHF

@ Seeing hash of one input gives no information on hash of
another value

MAC: Beyond One-Time

With Combinatorial Hash Func’rlons and PRF
l - hedeel

@ Recall: MACs can be based entirely on PRFs | |
@ PRF is a MAC (on one-block messages) Fi Fi || |Fk
| e ol i | i
@ CBC-MAC: Extends PRF to any fixed length domain T
@ Can also make it work with variable input-length:
@ Derive K as Fx/(1), where t is the number of blocks
@ Or, Use first block to specify number of blocks
@ Or, output not the last tag T, but Fx(T), where K’ is an
independent key (EMAC)
@ Or, XOR last message block with another key K’ (CMAC)
@ Using hash & PRF (for fixed length domains): (h(M) not J
o d revealed

® MACkr*(M) = PRFk(h(M)) where h<#, and # is a 2-UHF

MAC: Beyond One-Time

With Combinatorial Hash Functions and PRF

@ Using an ¢-AXUHF & PRF (for variable length domains)
& MACkr*(M) = (r, PRFk(r)@h(M)) where h<#, & ¢-AXUHF, r random
@ Forgery with a fresh r prevented by PRF.

@ Forgery reusing an r requires knowing h(M)®h(M’), given no
information about h (due to encryption with PRF)

® GMAC, a NIST standard: With polynomial evaluation over GF(2k)
being the e-AXUHF

@ Note that GMAC is randomised as it needs a nonce r

@ But not a problem when used as part of Authenticated
Encryption, which already needs a nonce

@ Galois Counter Mode (GCM): Authenticated encryption using encrypt
(AES in CTR mode) then MAC (GMAC).

@ Nonce r (with counter 0) used for GMAC, and PRFk(r+i) with i> O,
for encryption. (Nonce itself is not MAC’ed.)

MAC: Beyond One-Time
With Cryptographic Hash Functions

@ Previous solutions required pseudorandomness
@ What if we should base it only on fixed input-length MAC (not PRF)?

@ Why? "To avoid export restrictions!” (Was a consideration in the
19905). Also security/efficiency

@ Candidate fixed input-length MACs in practice that do not use a
block-cipher: compression functions (with key as IV)

@ MAC*h(M) = MACk(h(M)) where h<—#, and & a weak-CRHF

i o ¥l 3

® Weak-CRHFs can be based on OWF (unlike CRHF). rZE/r\eAc)‘l:dcfyot:y
Efficient heuristic construction from compression | oracle access to h

functions (again)

MAC: Beyond One-Time

With Cryptographic Hash Functions
@ HMAC: Hash-based MAC

K" M
@ Essentially built from a compression - - - mf "
function f " Ki ll l l
@ If keys K;, Kz independent (called _l¥ _lf 5 _lf _lf
NMAC), then secure MAC if: fis [=l L:/ | L,i LJ)
a fixed input-length MAC & the K)
Merkle-Damgard iterated-hash is a = K2 |)
weak-CRHF l;
f f
@ In HMAC (K. K2) derived from (K’ K"), L \—u/ LJ)
in turn heuristically derived from a \/
A

single key K. If f is a (weak kind of)
PRF K;, K2 can be considered
independent

Hash Not a Random Oracle!

@ If His a Random Oracle, then just H(K|IM) will be a MAC

@ But if H is a Merkle-Damgard iterated-hash function, then
there is a simple length-extension attack for forgery

@ Take M" = M || padm Il X, where padwm is a block encoding
IM| (used by the Merkle-Damgard iterated-hash) and X is
arbitrary. Then, can compute H(K|IM’) from H(K|IM).

@ (That attack can be fixed by preventing extension:
prefix-free encoding)

@ Other suggestions like SHAL(MIIK), SHAL(K|IMIIK) all turned
out to be flawed too

@ @ O ©

d

Today

A CRHF candidate from DDH
CRHF and UOWHF domain extension using Merkle trees
Merkle-Damgard iterated hash function for full-domain hash
Hash functions for MACs
@ Hash-then-MAC

@ Using weak CRHF and fixed input-length MAC

@ Underlying HMAC/NMAC: compression function in an
iterated-hash function assumed fto be both a weak CRHF
and a fixed input-length MAC

@ GHASH
Next: Digital Signatures

