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Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.  
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si = 

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[ VerVK(M,s)=1 and (M,s) + {(Mi,si)} ]

SigSK VerVK

Weaker variant: Advantage = Pr[ VerVK(M,s)=1 and M + {Mi} ]



Digital Signatures

Online verification of real life identity is difficult


But the verification key for a  
digital signature can serve as  
your digital identity


OK to own multiple digital  
identities


Compromised if you lose your 
signing key


Central to identity on the internet  
(with the help of certificate authorities), crypto currencies, etc.



Recall One-time MAC to sign a single n bit message


Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n


Signature for m1...mn be (rimi)i=1..n

r10 r20 r30

r11 r21 r31

One-time Digital Signatures

One-Time Digital Signature: Same signing key and 
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF


Verification applies f to signature elements and 
compares with VK


Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s 
One-Time 
Signature



Signatures from OWF
Lamport’s scheme based on OWF


One-time and has a fixed-length message


One-time, fixed-length message signatures         (Lamport)  
  Domain-Extension

³ arbitrary length messages            (using UOWHF) 
  “Certificate Tree”

³ many-time signatures                  (using PRF)


So, in principle, full-fledged digital signatures can be entirely 
based on OWF


Coming up:


Hash-and-Sign domain extension for signatures


Domain extension using CRHF (UOWHF suffices, but less 
efficient)


“Certificate tree”



Domain Extension of 
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)


Sign*SK,h(M) = SignSK(h(M)) where h±H in both SK*,VK*


Security: Forgery gives either a hash collision or a forgery for 
the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define


Event1: A outputs (M,Ã) s.t. h(M)=h(Mi), MibM, where A had asked 
for signature on Mi.  
Event2: A’s forgery not on such an M.

Advantage f Pr[Event1 or Event2] f Pr[Event1] + Pr[Event2]

CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run 
A; answer signing queries of A using (SK,h). If A outputs (M,Ã) s.t.  
#i h(M)=h(Mi), MibM, then output (M,Mi). Advantage = Pr[Event1]


Signature adversary: given VK, pick h, let VK*=(VK,h), and run A; 
answer signing queries of A using h and Sign oracle. If A outputs 
forgery (M,Ã), output (h(M),Ã). Advantage = Pr[Event2]



One-Time ³ Many-Times
Certificate chain: VK1 ³ (VK2, Ã2) ³ … ³ (VKt, Ãt) ³ (m,Ã) 
where Ãi is a signature on VKi that verifies w.r.t. VKi-1, and  
Ã is a signature on m w.r.t. VKt


Suppose a “trustworthy” signer only signs the verification key of 
another “trustworthy” signer. Then, if VK1 is known to be issued by 
a trustworthy signer, and all links verified, then the message is 
signed by a trustworthy signer.


Certificate tree for one-time ³ many-times signatures


Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf 
designated for a message. Parent VK signs its pair of children 
VKs (one-time, fixed-length sign). Verifier remembers only root 
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree 
(i.e., SK for each node), and remembers only the PRF seed



Signatures from OWF 
Summary

One-time, fixed-length message signatures         (Lamport)  
  Domain-Extension

³ arbitrary length messages            (using UOWHF) 
  “Certificate Tree”

³ many-time signatures                  (using PRF)


So, in principle, full-fledged digital signatures can be entirely 
based on OWF


Not very efficient: Say hashes are O(k) bits long. Then, a signature 
contains O(k) VKs of Lamport signature, each of which, to allow 
signing O(k) bit messages, is O(k2) bits long


Coming up: More efficient schemes



Hash and Invert

Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where 
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,Ã) = 1 iff f(Ã)=M.


Attack: pick Ã, let M=f(Ã) (Existential forgery)


Fix, using a “hash”: Sign(M) = f-1( Hash(M) )


Secure in the random oracle model


Hash can handle variable length inputs


RSA-PSS in RSA Standard PKCS#1 is based on this



Proving Security in the 
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a 
secure digital signature, when Hash is modelled as a random oracle


Hope: Since adversary can’t invert Hash, needs to compute f-1


Problem: Signing oracle gives adversary access to the f-1 oracle. 
But then, trapdoor OWP gives no guarantees!


But adversary only sees (x,f-1(x)) where x = Hash(M) is random. 
This can be arranged by picking f-1(x) first and fixing Hash(M) 
afterwards!


Modeling as an RO: RO randomly initialized to a random function H 
from {0,1}* to {0,1}k


Signer and verifier (and forger) get oracle access to H(.)


All probabilities also over the initialization of the RO



Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with 
(f,f-1) from Trapdoor OWP and H an RO), then  A* that can break 
Trapdoor OWP (i.e., given just f, and a random challenge z, can 
find f-1(z) w.n.n.p). A*(f,z) runs A internally. 


A expects f, access to the RO and a signing oracle f-1(Hash(.)) 
and outputs (M,Ã) as forgery

A* can implement RO:  a random 
response to each new query!


A* gets f, but doesn’t have f-1 to sign


But x = H(M) is a random value that 
A* can pick!   


A* picks H(M) as x=f(y) for random y; 
then Sign(M) = f-1(x) = y

(f,z)

A

Mi

f-1(H(Mi)) (M,Ã)

Sig Mj H(Mj)

H



Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP


A* implements H and Sign: For each new M queried to H 
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z


For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last 
query” to H, i.e., the one for 
verifying the forgery (which 
may or may not be a new query)


Given a bound q on the number of 
queries that A makes to Sign/H, with 
probability 1/q, A* would have set 
H(M)=z, where M is the message in the 
forgery


In that case forgery ⇒ Ã = f-1(z) A

Mi

f-1(H(Mi)) (M,Ã)

Sig

(f,z)

Mj H(Mj)

H

Ã



Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a  
generator, for which DLA holds, and a random oracle H


Or (G,g) can be picked as part of key generation


Signing Key: y * Zq where G is of order q.  Verification Key: Y = gy


Signy(M) = (x,s) where x = H(M||gr) and s = r-xy, for a random r


VerifyY(M,(x,s)): Compute R = gsçYx and check x = H(M||R)


Secure in the Random Oracle Model under the Discrete Log 
Assumption for group G


Alternately, under a heuristic model for the group (called the 
Generic Group Model), but under standard-model assumptions 
on the hash function


Will analyse later



Summary
Digital signatures can be based on OWF + UWOHF + PRF


In turn based on OWF (or more efficiently on OWP)


More efficiently, can be based on number-theoretic/algebraic 
assumptions (e.g., Cramer-Shoup signatures based on Strong RSA 
and CRHF)


In practice, based on number-theoretic/algebraic assumptions in 
the random oracle model


RSA-PSS, of the form f-1( Hash(M) ), where f a Trapdoor OWP


DSA and variants, based on Schnorr signature


Next up: Zero-Knowledge proofs 


