Digital Signatures

Lecture 11

Digital Signatures

@ Syntax: KeyGen, Signsk and Verifyyk.
Security: Same experiment as MACS, but adversary given VK

lVerVK(M,s)

Advantage = Pr[Verw(M,s)=1 and (M,s) ¢ {(M;si)}]
Weaker variant: Advantage = Pr[Veryk(M,s)=1 and M ¢ {M;}]

Digital Signatures

@ Online verification of real life identity is difficult

@ But the verification key for a
digital signature can serve as
your digital identity

@ OK fo own multiple digital
idenftities

@ Compromised if you lose your
signing key

"On the Internet, nobaody knows you're a dog.”

@ Central to identity on the internet
(with the help of certificate authorities), crypto currencies, etc.

One-time Digital Signatures

@ Recall One-time MAC to sign a single n bit message

Lamports
One-Time
Signature

@ Shared secret key: 2n random strings (each k-bit long) (ri,rit)izi.

@ Signature for mi..m, be (rimi)i-1.n

@ One-Time Digital Signature: Same signing key and
signature, but VK= (f(rio),f(ri1))ici.n where f is a OWF

@ Verification applies f to signature elements and
compares with VK

@ Security [Exercise]

f(rlo)

f(r2o)

f(r3o)

f(rl)

f(ra)

f(r3)

l"lo

I"Zo

I"3o

rh

I"21

r3

Signatures from OWF

@ Lamports scheme based on OWF

@ One-time and has a fixed-length message

® One-time, fixed-length message signatures (Lamport)
Domain-Extension . grbitrary length messages (using UOWHF)
Certificate Tree” . many-time signatures (using PRF)

@ So, in principle, full-fledged digital signatures can be entirely
based on OWF

@ Coming up:
® Hash-and-Sign domain extension for signatures

@ Domain extension using CRHF (UOWHF suffices, but less
efficient)

® "Certificate tree”

Domain Extension of
Signatures using Hash

@ Domain extension using a CRHF (not weak CRHF, unlike for MAC)
@ Sign*skn(M) = Signsk(h(M)) where h<# in both SK*VK*

@ Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

@ Formal reduction: Given adversary A for Sign*, define

@ Event;: A outputs (M,s) s.t. h(M)=h(M;), Mi#M, where A had asked
for signature on M..

Eventa: As forgery not on such an M.

@ Advantage < Pr[Event; or Event;] < Pr[Eventi] + Pr[Event;]

@ CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run
A; answer signing queries of A using (SK,h). If A outputs (M,0) s.t.
3i h(M)=h(M;), Mi#M, then output (M,M)). Advantage = Pr[Event]

@ Signature adversary: given VK, pick h, let VK*=(VK,h), and run A;
answer signing queries of A using h and Sign oracle. If A outputs
forgery (M,s), output (h(M),s). Advantage = Pr[Event;]

One-Time — Many-Times

Certificate chain: VK; — (VK2 02) — ... — (VK4, o) — (m,o0)

where gj is a signature on VK; that verifies w.r.t. VK1, and

o is a signature on m w.r.t. VK

@ Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK, is known to be issued by

a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate free for one-time — many-times signatures
@ Idea: Each message is signed using a unique VK for that message

@ Verifier cant hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

@ Signer cant remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Signatures from OWF

Summary
® One-time, fixed-length message signatures (Lamport)
Domain-Extension . grbitrary length messages (using UOWHF)
“Certificate Tree” . many-time signatures (using PRF)

@ So, in principle, full-fledged digital signatures can be entirely
based on OWF

@ Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

@ Coming up: More efficient schemes

Hash and Invert

@ Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,s) = 1 iff f(c)=M.

@ Attack: pick o, let M=f(c) (Existential forgery)
@ Fix, using a “hash”: Sign(M) = f-1(Hash(M))

@ Secure in the random oracle model
@ Hash can handle variable length inputs

@ RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the
RO Model

@ To prove: If Trapdoor OWP secure, then Sign(M) = f-i(Hash(M)) is a
secure digital signature, when Hash is modelled as a random oracle

@ Hope: Since adversary cant invert Hash, needs to compute f-!

@ Problem: Signing oracle gives adversary access to the f-! oracle.
But then, trapdoor OWP gives no guarantees!

@ But adversary only sees (x,f-!(x)) where x = Hash(M) is random.
This can be arranged by picking f-{(x) first and fixing Hash(M)
afterwards!

@ Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

@ Signer and verifier (and forger) get oracle access to H(.)

@ All probabilities also over the initialization of the RO

Proving Security in ROM

@ Reduction: If A forges signature (where Sign(M) = f-i(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWRP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A“(f,z) runs A internally.

@ A expects f, access to the RO and a signing oracle f-}(Hash(.))
and outputs (M,s) as forgery

@ A* can implement RO: a random
response to each new query! e

@ A° gets f, but doesnt have f-! to sign

@ But x = H(M) is a random value that
A can pick!

@ A* picks H(M) as x=f(y) for random v;
then Sign(M) = fi(x) = v

Proving Security in ROM

@ A" s.t. if A forges signature, then A can break Trapdoor OWP
@ A" implements H and Sign: For each new M queried to H
(including by Sign), A sets H(M)=f(y) for random vy; Sign(M) =y
@ But A* should force A to invert z
@ For a random (new) query M (say tth) A* sets H(M)=z

@ Here queries include the “last
query” to H, i.e., the one for f
verifying the forgery (which
may or may not be a new query)

.
o
.
.
.

.
"“
.
““““

@ Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A“ would have set
H(M)=z, where M is the message in the
forgery

@ In that case forgery = o = f-i(z)

Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

@ Or (G,g) can be picked as part of key generation

Signing Key: y € Zq where G is of order q. Verification Key: Y = gv
Signy(M) = (x,5) where x = H(Mllgr) and s = r-xy, for a random r
Verifyy(M,(x,s)): Compute R = gs-Y* and check x = H(MIIR)

Secure in the Random Oracle Model under the Discrete Log
Assumption for group G

@ Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

@ Will analyse later

Summary

Digital signatures can be based on OWF + UWOHF + PRF
@ In turn based on OWF (or more efficiently on OWP)

More efficiently, can be based on number-theoretic/algebraic

assumptions (e.g., Cramer-Shoup signatures based on Strong RSA
and CRHF)

In practice, based on number-theoretic/algebraic assumptions in
the random oracle model

@ RSA-PSS, of the form f-I(Hash(M)), where f a Trapdoor OWP
@ DSA and variants, based on Schnorr signature

Next up: Zero-Knowledge proofs

