
Digital Signatures
Lecture 11

Digital Signatures
Syntax: KeyGen, SignSK and VerifyVK.
Security: Same experiment as MAC’s, but adversary given VK

VK

Mi

si =

SignSK(Mi)

(M,s)

VerVK(M,s)

Advantage = Pr[VerVK(M,s)=1 and (M,s) + {(Mi,si)}]

SigSK VerVK

Weaker variant: Advantage = Pr[VerVK(M,s)=1 and M + {Mi}]

Digital Signatures

Online verification of real life identity is difficult

But the verification key for a
digital signature can serve as
your digital identity

OK to own multiple digital
identities

Compromised if you lose your
signing key

Central to identity on the internet
(with the help of certificate authorities), crypto currencies, etc.

Recall One-time MAC to sign a single n bit message

Shared secret key: 2n random strings (each k-bit long) (ri0,ri1)i=1..n

Signature for m1...mn be (rimi)i=1..n

r10 r20 r30

r11 r21 r31

One-time Digital Signatures

One-Time Digital Signature: Same signing key and
signature, but VK= (f(ri0),f(ri1))i=1..n where f is a OWF

Verification applies f to signature elements and
compares with VK

Security [Exercise]

f(r10) f(r20) f(r30)

f(r11) f(r21) f(r31)

Lamport’s
One-Time
Signature

Signatures from OWF
Lamport’s scheme based on OWF

One-time and has a fixed-length message

One-time, fixed-length message signatures (Lamport)
 Domain-Extension

³ arbitrary length messages (using UOWHF)
 “Certificate Tree”

³ many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely
based on OWF

Coming up:

Hash-and-Sign domain extension for signatures

Domain extension using CRHF (UOWHF suffices, but less
efficient)

“Certificate tree”

Domain Extension of
Signatures using Hash

Domain extension using a CRHF (not weak CRHF, unlike for MAC)

Sign*SK,h(M) = SignSK(h(M)) where h±H in both SK*,VK*

Security: Forgery gives either a hash collision or a forgery for
the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define

Event1: A outputs (M,Ã) s.t. h(M)=h(Mi), MibM, where A had asked
for signature on Mi.
Event2: A’s forgery not on such an M.

Advantage f Pr[Event1 or Event2] f Pr[Event1] + Pr[Event2]

CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run
A; answer signing queries of A using (SK,h). If A outputs (M,Ã) s.t.
#i h(M)=h(Mi), MibM, then output (M,Mi). Advantage = Pr[Event1]

Signature adversary: given VK, pick h, let VK*=(VK,h), and run A;
answer signing queries of A using h and Sign oracle. If A outputs
forgery (M,Ã), output (h(M),Ã). Advantage = Pr[Event2]

One-Time ³ Many-Times
Certificate chain: VK1 ³ (VK2, Ã2) ³ … ³ (VKt, Ãt) ³ (m,Ã)
where Ãi is a signature on VKi that verifies w.r.t. VKi-1, and
Ã is a signature on m w.r.t. VKt

Suppose a “trustworthy” signer only signs the verification key of
another “trustworthy” signer. Then, if VK1 is known to be issued by
a trustworthy signer, and all links verified, then the message is
signed by a trustworthy signer.

Certificate tree for one-time ³ many-times signatures

Idea: Each message is signed using a unique VK for that message

Verifier can’t hold all VKs: A binary tree of VKs, with each leaf
designated for a message. Parent VK signs its pair of children
VKs (one-time, fixed-length sign). Verifier remembers only root
VK. Signer provides a certificate chain to the leaf VK used.

Signer can’t remember all SKs: Uses a PRF to define the tree
(i.e., SK for each node), and remembers only the PRF seed

Signatures from OWF
Summary

One-time, fixed-length message signatures (Lamport)
 Domain-Extension

³ arbitrary length messages (using UOWHF)
 “Certificate Tree”

³ many-time signatures (using PRF)

So, in principle, full-fledged digital signatures can be entirely
based on OWF

Not very efficient: Say hashes are O(k) bits long. Then, a signature
contains O(k) VKs of Lamport signature, each of which, to allow
signing O(k) bit messages, is O(k2) bits long

Coming up: More efficient schemes

Hash and Invert

Diffie-Hellman suggestion (heuristic): Sign(M) = f-1(M) where
(SK,VK) = (f-1,f), a Trapdoor OWP pair. Verify(M,Ã) = 1 iff f(Ã)=M.

Attack: pick Ã, let M=f(Ã) (Existential forgery)

Fix, using a “hash”: Sign(M) = f-1(Hash(M))

Secure in the random oracle model

Hash can handle variable length inputs

RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the
RO Model

To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a
secure digital signature, when Hash is modelled as a random oracle

Hope: Since adversary can’t invert Hash, needs to compute f-1

Problem: Signing oracle gives adversary access to the f-1 oracle.
But then, trapdoor OWP gives no guarantees!

But adversary only sees (x,f-1(x)) where x = Hash(M) is random.
This can be arranged by picking f-1(x) first and fixing Hash(M)
afterwards!

Modeling as an RO: RO randomly initialized to a random function H
from {0,1}* to {0,1}k

Signer and verifier (and forger) get oracle access to H(.)

All probabilities also over the initialization of the RO

Proving Security in ROM
Reduction: If A forges signature (where Sign(M) = f-1(H(M)) with
(f,f-1) from Trapdoor OWP and H an RO), then A* that can break
Trapdoor OWP (i.e., given just f, and a random challenge z, can
find f-1(z) w.n.n.p). A*(f,z) runs A internally.

A expects f, access to the RO and a signing oracle f-1(Hash(.))
and outputs (M,Ã) as forgery

A* can implement RO: a random
response to each new query!

A* gets f, but doesn’t have f-1 to sign

But x = H(M) is a random value that
A* can pick!

A* picks H(M) as x=f(y) for random y;
then Sign(M) = f-1(x) = y

(f,z)

A

Mi

f-1(H(Mi)) (M,Ã)

Sig Mj H(Mj)

H

Proving Security in ROM
A* s.t. if A forges signature, then A* can break Trapdoor OWP

A* implements H and Sign: For each new M queried to H
(including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y

But A* should force A to invert z

For a random (new) query M (say tth) A* sets H(M)=z

Here queries include the “last
query” to H, i.e., the one for
verifying the forgery (which
may or may not be a new query)

Given a bound q on the number of
queries that A makes to Sign/H, with
probability 1/q, A* would have set
H(M)=z, where M is the message in the
forgery

In that case forgery ⇒ Ã = f-1(z) A

Mi

f-1(H(Mi)) (M,Ã)

Sig

(f,z)

Mj H(Mj)

H

Ã

Schnorr Signature

Public parameters: (G,g) where G is a prime-order group and g a
generator, for which DLA holds, and a random oracle H

Or (G,g) can be picked as part of key generation

Signing Key: y * Zq where G is of order q. Verification Key: Y = gy

Signy(M) = (x,s) where x = H(M||gr) and s = r-xy, for a random r

VerifyY(M,(x,s)): Compute R = gsçYx and check x = H(M||R)

Secure in the Random Oracle Model under the Discrete Log
Assumption for group G

Alternately, under a heuristic model for the group (called the
Generic Group Model), but under standard-model assumptions
on the hash function

Will analyse later

Summary
Digital signatures can be based on OWF + UWOHF + PRF

In turn based on OWF (or more efficiently on OWP)

More efficiently, can be based on number-theoretic/algebraic
assumptions (e.g., Cramer-Shoup signatures based on Strong RSA
and CRHF)

In practice, based on number-theoretic/algebraic assumptions in
the random oracle model

RSA-PSS, of the form f-1(Hash(M)), where f a Trapdoor OWP

DSA and variants, based on Schnorr signature

Next up: Zero-Knowledge proofs

