Digital Signatures Lecture 11

Digital Signatures

Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
 Security: Same experiment as MAC's, but adversary given VK

Advantage = Pr[Ver_{VK}(M,s)=1 and (M,s) \notin {(M_i,s_i)}] Weaker variant: Advantage = Pr[Ver_{VK}(M,s)=1 and M \notin {M_i}]

Digital Signatures

Online verification of real life identity is difficult

 But the verification key for a digital signature can serve as your <u>digital identity</u>

 OK to own multiple digital identities

Compromised if you lose your signing key

One-time Digital Signatures

Recall One-time MAC to sign a single n bit message

Shared secret key: 2n random strings (each k-bit long) (rⁱ₀,rⁱ₁)_{i=1..n}

Signature for m₁...m_n be (rⁱmi)_{i=1..n}

One-Time Digital Signature: Same signing key and signature, but VK= (f(rⁱ₀), f(rⁱ₁))_{i=1..n} where f is a OWF

Verification applies f to signature elements and compares with VK

Security [Exercise]

Lamport's

One-Time

Signature

r¹0	r² ₀	r³0
r^{1}	r^{2}_{1}	r ³ 1

Signatures from OWF

Lamport's scheme based on OWF

- One-time and has a fixed-length message
- One-time, fixed-length message signatures
 <u>Domain-Extension</u> arbitrary length messages
 <u>"Certificate Tree"</u> many-time signatures

(Lamport) (using UOWHF) (using PRF)

So, in principle, full-fledged digital signatures can be entirely based on OWF

Coming up:

Hash-and-Sign domain extension for signatures

- Domain extension using CRHF (UOWHF suffices, but less efficient)
- "Certificate tree"

Domain Extension of Signatures using Hash
Domain extension using a CRHF (not weak CRHF, unlike for MAC)
Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where h←# in both SK*,VK*
Security: Forgery gives either a hash collision or a forgery for the original (finite domain) signature

Formal reduction: Given adversary A for Sign*, define

Event₁: A outputs (M,σ) s.t. h(M)=h(M_i), M_i≠M, where A had asked for signature on M_i.
 Event₂: A's forgery not on such an M.

• Advantage \leq Pr[Event₁ or Event₂] \leq Pr[Event₁] + Pr[Event₂]

CRHF adversary: given h, sample (SK,VK), let VK*=(VK,h), and run A; answer signing queries of A using (SK,h). If A outputs (M,σ) s.t. ∃i h(M)=h(Mi), Mi≠M, then output (M,Mi). Advantage = Pr[Event1]

Signature adversary: given VK, pick h, let VK*=(VK,h), and run A; answer signing queries of A using h and Sign oracle. If A outputs forgery (M,σ), output (h(M),σ). Advantage = Pr[Event₂]

One-Time \rightarrow Many-Times

• Certificate chain: $VK_1 \rightarrow (VK_2, \sigma_2) \rightarrow ... \rightarrow (VK_t, \sigma_t) \rightarrow (m,\sigma)$ where σ_i is a signature on VK_i that verifies w.r.t. VK_{i-1} , and σ is a signature on m w.r.t. VK_t

Suppose a "trustworthy" signer only signs the verification key of another "trustworthy" signer. Then, if VK₁ is known to be issued by a trustworthy signer, and all links verified, then the message is signed by a trustworthy signer.

• Certificate tree for one-time \rightarrow many-times signatures

Idea: Each message is signed using a unique VK for that message

Verifier can't hold all VKs: A binary tree of VKs, with each leaf designated for a message. Parent VK signs its pair of children VKs (one-time, fixed-length sign). Verifier remembers only root VK. Signer provides a certificate chain to the leaf VK used.

Signer can't remember all SKs: Uses a PRF to define the tree (i.e., SK for each node), and remembers only the PRF seed

Summary

One-time, fixed-length message signatures
 <u>Domain-Extension</u> arbitrary length messages
 <u>"Certificate Tree"</u> many-time signatures

(Lamport) (using UOWHF) (using PRF)

So, in principle, full-fledged digital signatures can be entirely based on OWF

Not very efficient: Say hashes are O(k) bits long. Then, a signature contains O(k) VKs of Lamport signature, each of which, to allow signing O(k) bit messages, is O(k²) bits long

Coming up: More efficient schemes

Hash and Invert

Diffie-Hellman suggestion (heuristic): Sign(M) = f⁻¹(M) where (SK,VK) = (f⁻¹,f), a Trapdoor OWP pair. Verify(M,σ) = 1 iff f(σ)=M.

• Attack: pick σ , let M=f(σ) (Existential forgery)

• Fix, using a "hash": Sign(M) = $f^{-1}(Hash(M))$

Secure in the random oracle model

Hash can handle variable length inputs

RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the RO Model

- To prove: If Trapdoor OWP secure, then Sign(M) = f⁻¹(Hash(M)) is a secure digital signature, when Hash is modelled as a random oracle
 - Hope: Since adversary can't invert Hash, needs to compute f⁻¹
 - Problem: Signing oracle gives adversary access to the f⁻¹ oracle. But then, trapdoor OWP gives no guarantees!
 - But adversary only sees (x,f⁻¹(x)) where x = Hash(M) is random. This can be arranged by picking f⁻¹(x) first and fixing Hash(M) afterwards!
- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k
 - Signer and verifier (and forger) get oracle access to H(.)
 - All probabilities also over the initialization of the RO

Proving Security in ROM

Reduction: If A forges signature (where Sign(M) = f⁻¹(H(M)) with (f,f⁻¹) from Trapdoor OWP and H an RO), then A* that can break Trapdoor OWP (i.e., given just f, and a random challenge z, can find f⁻¹(z) w.n.n.p). A*(f,z) runs A internally.

• A expects f, access to the RO and a signing oracle f⁻¹(Hash(.)) and outputs (M, σ) as forgery

(f,z)

Sig

 $f^{-1}(H(M_i))$

H(M_i)

- A* can implement RO: a random response to each new query!
- A* gets f, but doesn't have f⁻¹ to sign
 - But x = H(M) is a random value that A* can pick!

A* picks H(M) as x=f(y) for random y; then Sign(M) = f⁻¹(x) = y

Proving Security in ROM

A* s.t. if A forges signature, then A* can break Trapdoor OWP
A* implements H and Sign: For each new M queried to H (including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y
But A* should force A to invert z

For a random (new) query M (say tth) A^{*} sets H(M)=z

H(M_i)

Mj

Siq

 $f^{-1}(H(M_i))$

Here queries include the "last query" to H, i.e., the one for verifying the forgery (which may or may not be a new query)

Given a bound q on the number of queries that A makes to Sign/H, with probability 1/q, A* would have set H(M)=z, where M is the message in the forgery

• In that case forgery $\Rightarrow \sigma = f^{-1}(z)$

Schnorr Signature

- Ø Public parameters: (G,g) where G is a prime-order group and g a generator, for which DLA holds, and a random oracle H Or (G,g) can be picked as part of key generation • Signing Key: $y \in Z_q$ where G is of order q. Verification Key: $Y = g^y$ • Sign_y(M) = (x,s) where $x = H(M||g^r)$ and s = r-xy, for a random r Verify_Y(M,(x,s)): Compute $R = g^{s \cdot Y^{x}}$ and check x = H(M||R)0 Secure in the Random Oracle Model under the Discrete Log Assumption for group G Alternately, under a heuristic model for the group (called the Generic Group Model), but under standard-model assumptions on the hash function
 - Will analyse later

Summary

Digital signatures can be based on OWF + UWOHF + PRF

In turn based on OWF (or more efficiently on OWP)

More efficiently, can be based on number-theoretic/algebraic assumptions (e.g., Cramer-Shoup signatures based on Strong RSA and CRHF)

In practice, based on number-theoretic/algebraic assumptions in the random oracle model

RSA-PSS, of the form f⁻¹(Hash(M)), where f a Trapdoor OWP

DSA and variants, based on Schnorr signature

Next up: Zero-Knowledge proofs