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ZK Proof for NP Languages
Consider an NP language L specified by a poly-time computable 
predicate R: i.e., x*L iff #w s.t. R(x,w)=1. A ZK proof protocol P÷V for L 
has the following properties


Completeness: if #w R(x,w)=1, then Pr[P(x,w)÷V(x) = 1] = 1


Soundness: if $w R(x,w)=1, then Pr[P*(x)÷V(x) = 1] = negl  
(for any P*)


A stronger notion: Proof of Knowledge


Zero-Knowledge: if #w R(x,w)=1, then view of the verifier in 
P(x,w)÷V(x) can be (indistinguishably) simulated from x


This is called Honest Verifier ZK (HVZK)


Stronger property: For any PPT V*, there is a simulator S s.t., 
ViewV*(P(x,w)÷V*(x)) j S(x)

V learns nothing 
beyond the fact that 
x has the property

ZK argument: soundness required 
only against PPT P*
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HVZK Proof of Knowledge
Proof of Knowledge: If an adversary can give valid proofs (with 
significant probability), then there is an efficient way to extract a 
witness from that adversary

A ZK Proof of knowledge of discrete log of Y=gy 

P³V:  R := gr  
V³P:  x  
P³V:  s := xy + r  (modulo order of the group) 
V checks: gs  = Yx R 

Proof of Knowledge: 

Firstly, gs = Yx R  ⇒  s = xy+r, where R = gr

If after sending R, P could respond to two different 
challenges x1 and x2 as s1 = x1y + r and s2 = x2y + r,  
then can solve for y (in a prime-order group)

HVZK: simulation picks s, x first and sets R = gs/Yx
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HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier


e.g. in PoK of discrete log, simulator picks (x,s) first and 
computes R (without knowing r). Relies on verifier to pick x 
independent of R.


Special soundness: If given (R,x,s) and (R,x’,s’) s.t. xbx’ and both 
accepted by verifier, then can derive a valid witness


e.g. solve y from s=xy+r and s’=x’y+r (given x,s,x’,s’)


Implies soundness: for each R s.t. prover has significant 
probability of being able to convince, can extract y from the 
prover with comparable probability (using “rewinding”, in a 
stand-alone setting)



Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)),  
i.e., Y = gy and Z = hy [Chaum-Pederson]


Can be used to prove equality of two El Gamal encryptions (A,B) & 
(A’,B’) w.r.t public-key (g,Y): set (h,Z) := (A/A’,B/B’)


P³V:  (R,W) := (gr, hr)  
V³P:  x  
P³V:  s := xy + r  (modulo order of the group) 
V checks: gs  = Yx R and hs  = Zx W

Special Soundness:

gs = YxR and hs = ZxW  ⇒  s = xy+r = xy’+r’   
where R=gr, Y=gy and W=hr’, Z=hy’


If two accepting transcripts (R,W,x1,s1) and (R,W,x2,s2) (x1bx2), then  
s1 = x1y + r = x1y’+ r’ and s2 =  x2y + r = x2y’+ r’. Then can find  
y = y’= (s1-s2)/(x1-x2) (in a prime-order group).


HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

Two parallel executions of the previous proof, 
with same x and s (forcing same r, y)



Fiat-Shamir Heuristic
Limitation of HVZK proofs: Do not guarantee ZK when verifier is 
actively corrupt


In principle, can be fixed by implementing the verifier using 
“secure 2-party computation” (possibly implicitly)


If verifier is a public-coin program (as in Chaum-Pederson) 
— i.e., simply picks random values and sends them — then, 
2PC needed only to generate random coins


Alternatively, Fiat-Shamir Heuristic: random coins from verifier 
defined as H(trans), where H is a random oracle and trans is the 
transcript of the proof so far (including the statement)


Also, importantly, removes need for interaction in the proof!



Fiat-Shamir Heuristic applied to the ZK Proof of knowledge of 
discrete log of Y=gy 

P³V:  R := gr  
V³P:  x  
P³V:  s := xy + r  
V checks: gs  = Yx R 

Essentially, the prover is giving the proof “to the random oracle” 
and then reporting the transcript to the verifier

To get an acceptable transcript, the prover must be able to 
convince the random oracle at least once (verifier checks that x 
matches what the oracle would have asked)

But if the proof system has negligible soundness error, it cannot 
do that in polynomial number of attempts, unless the statement 
is correct

P³V:  R := gr  
         x = H(g,Y,R) 
         s := xy + r  
V checks: gs  = YH(g,Y,R) R 

Fiat-Shamir Heuristic



Example Application: VRF
Verifiable Random Function


Is a PRF, but the (secret) key is sampled along with a public 
verification key PK


With SK, can not only compute w = FSK(q), but also generate a 
(non-interactive) proof that w is computed correctly; the 
proof can be verified using PK.


Even knowing PK, and after seeing proofs, for a new q, FSK(q) 
(without proof) should be pseudorandom, and also it should 
be infeasible to break the soundness of the proof system


Several applications: To implement a lottery (e.g., in Algorand), to 
assign pseudonyms that can be revealed later (e.g., in NSEC5), … 


We will see a simple VRF based on the computational Diffie-
Hellman assumption, and in the random oracle model, using Fiat-
Shamir heuristics



A PRF from RO

FSK(q) = H(SK||q) is a PRF if H is a random oracle (and SK long 
enough)


Why? Infeasible to guess SK correctly. Without querying H 
on prefix SK, FSK is identical to a truly random function.


But no PK for this F and no way to prove correct evaluation


Instead, let (SK,PK) = (y, Y=gy) and Fy(q) = H(hy), where h=H’(q)


H’ maps the input q into a random element in the group


Still a PRF: infeasible to find hy from (g,gy,h), assuming CDH


Need to prove that FSK(q) = w (where SK corresponds to PK)


Proof should not reveal SK, or make it feasible to break 
pseudorandomness (for new inputs)



A VRF from RO
(SK,PK) = (y, Y=gy) and Fy(q) = H(hy), where h=H’(q) 


If H is an R.O., then CDH ensures F is a PRF even given PK


Proof that Fy(Q) = w: 


Output Z s.t. H(Z) = w and give a ZK proof of equality of 
discrete logs for  (g,Y) and (h,Z)


i.e., proving that #y  Y=gy and Z=hy


Non-interactive proof using the Fiat-Shamir heuristic applied 
to Chaum-Pederson protocol


Does adding the proof hurt pseudorandomness/soundness?


Proof reveals nothing more than what (g,Y,h,Z) reveals


Which reveals nothing more than what (g,Y) reveals:  
(h,Z) can be simulated as (gr,Yr) since H’ random oracle



Fairly efficient ZK proofs systems exist for all NP properties


Even more efficient HVZK proof systems for specialised problems 
like equality of discrete logs


Fiat-Shamir heuristics can convert such protocols into non-

interactive proofs secure against actively corrupt verifiers too 
(but in the Random Oracle model)


An example application: VRF

Summary


