Zero Knowledge Proofs (ctd.)

Lecture 13

ZK Proof for NP Languages

- Consider an NP language L specified by a poly-time computable predicate R: i.e., x∈L iff ∃w s.t. R(x,w)=1. A ZK proof protocol P→V for L has the following properties
 - Completeness: if $\exists w R(x,w)=1$, then $Pr[P(x,w) \leftrightarrow V(x) = 1] = 1$
 - Soundness: if ∄w R(x,w)=1, then Pr[P*(x)→V(x) = 1] = negl
 (for any P*) ZK argument: soundness required only against PPT P*

A stronger notion: Proof of Knowledge

V learns nothing beyond the fact that x has the property

- Zero-Knowledge: if ∃w R(x,w)=1, then view of the verifier in P(x,w)→V(x) can be (indistinguishably) simulated from x
 - This is called Honest Verifier ZK (HVZK)
 - Stronger property: For any PPT V*, there is a simulator S s.t., View_{V*}(P(x,w)→V*(x)) ≈ S(x)

HVZK Proof of Knowledge

- Proof of Knowledge: If an adversary can give valid proofs (with significant probability), then there is an efficient way to extract a witness from that adversary
- A ZK Proof of knowledge of discrete log of Y=g^y
 - P \rightarrow V: R := g^r
 V \rightarrow P: x
 P \rightarrow V: s := xy + r (modulo order of the group)
 V checks: g^s = Y × R
 - Proof of Knowledge:

RECALL

- $\textcircled{Firstly, g^s = Y^{\times}R} \Rightarrow s = xy+r, where R = g^r$
- If after sending R, P <u>could</u> respond to two different challenges x₁ and x₂ as s₁ = x₁y + r and s₂ = x₂y + r, then can solve for y (in a prime-order group)
- HVZK: simulation picks s, x first and sets R = g^{s}/Y^{x}

HVZK and Special Soundness

HVZK: Simulation for honest (passively corrupt) verifier

- e.g. in PoK of discrete log, simulator picks (x,s) first and computes R (without knowing r). Relies on verifier to pick x independent of R.
- Special soundness: If given (R,x,s) and (R,x',s') s.t. x≠x' and both accepted by verifier, then can derive a valid witness
 - e.g. solve y from s=xy+r and s'=x'y+r (given x,s,x',s')
 - Implies soundness: for each R s.t. prover has significant probability of being able to convince, can extract y from the prover with comparable probability (using "rewinding", in a stand-alone setting)

Honest-Verifier ZK Proofs

ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)),
 i.e., Y = g^y and Z = h^y [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) & (A',B') w.r.t public-key (g,Y): set (h,Z) := (A/A',B/B')

P \rightarrow V: (R,W) := (g^r, h^r)
V \rightarrow P: x
P \rightarrow V: s := xy + r (modulo order of the group)
V checks: g^s = Y × R and h^s = Z × W

Special Soundness:

0

- $g^s = Y^*R$ and $h^s = Z^*W \implies s = xy+r = xy'+r'$ where $R=g^r$, $Y=g^y$ and $W=h^{r'}$, $Z=h^{y'}$
- If two accepting transcripts (R,W,x₁,s₁) and (R,W,x₂,s₂) (x₁≠x₂), then s₁ = x₁y + r = x₁y' + r' and s₂ = x₂y + r = x₂y' + r'. Then can find y = y' = (s₁-s₂)/(x₁-x₂) (in a prime-order group).
 HVZK: simulation picks x, s first and sets R=g^s/Y^x, W=h^s/Z^x

Fiat-Shamir Heuristic

- Limitation of HVZK proofs: Do not guarantee ZK when verifier is actively corrupt
- In principle, can be fixed by implementing the verifier using "secure 2-party computation" (possibly implicitly)
- If verifier is a public-coin program (as in Chaum-Pederson)
 i.e., simply picks random values and sends them then,
 2PC needed only to generate random coins
- Alternatively, Fiat-Shamir Heuristic: random coins from verifier defined as H(trans), where H is a random oracle and trans is the transcript of the proof so far (including the statement)
 - Also, importantly, removes need for interaction in the proof!

Fiat-Shamir Heuristic

- Fiat-Shamir Heuristic applied to the ZK Proof of knowledge of discrete log of Y=g^y
- Essentially, the prover is giving the proof "to the random oracle" and then reporting the transcript to the verifier
- To get an acceptable transcript, the prover must be able to convince the random oracle at least once (verifier checks that x matches what the oracle would have asked)
- But if the proof system has negligible soundness error, it cannot do that in polynomial number of attempts, unless the statement is correct

Example Application: VRF

- Verifiable Random Function
 - Is a PRF, but the (secret) key is sampled along with a public verification key PK
 - With SK, can not only compute w = F_{SK}(q), but also generate a (non-interactive) proof that w is computed correctly; the proof can be verified using PK.
 - Even knowing PK, and after seeing proofs, for a new q, F_{SK}(q) (without proof) should be pseudorandom, and also it should be infeasible to break the soundness of the proof system
- Several applications: To implement a lottery (e.g., in Algorand), to assign pseudonyms that can be revealed later (e.g., in NSEC5), ...
- We will see a simple VRF based on the computational Diffie-Hellman assumption, and in the random oracle model, using Fiat-Shamir heuristics

A PRF from RO

- F_{SK}(q) = H(SK||q) is a PRF if H is a random oracle (and SK long enough)
- Why? Infeasible to guess SK correctly. Without querying H on prefix SK, F_{SK} is identical to a truly random function.
 But no PK for this F and no way to prove correct evaluation
 Instead, let (SK,PK) = (y, Y=g^y) and F_y(q) = H(h^y), where h=H'(q)
 H' maps the input q into a random element in the group
 Still a PRF: infeasible to find h^y from (g,g^y,h), assuming CDH
 Need to prove that F_{SK}(q) = w (where SK corresponds to PK)
 - Proof should not reveal SK, or make it feasible to break pseudorandomness (for new inputs)

A VRF from RO

- (SK,PK) = (y, Y=g^y) and $F_y(q) = H(h^y)$, where h=H'(q)
- Proof that $F_y(Q) = w$:
 - Output Z s.t. H(Z) = w and give a ZK proof of equality of discrete logs for (g,Y) and (h,Z)

i.e., proving that $\exists y \; Y=g^y \text{ and } Z=h^y$

Non-interactive proof using the Fiat-Shamir heuristic applied to Chaum-Pederson protocol

Does adding the proof hurt pseudorandomness/soundness?

- Proof reveals nothing more than what (g,Y,h,Z) reveals
- Which reveals nothing more than what (g,Y) reveals:
 (h,Z) can be simulated as (g^r,Y^r) since H' random oracle

Summary

- Fairly efficient ZK proofs systems exist for all NP properties
- Even more efficient HVZK proof systems for specialised problems like equality of discrete logs
- Fiat-Shamir heuristics can convert such protocols into noninteractive proofs secure against actively corrupt verifiers too (but in the Random Oracle model)
- An example application: VRF