Randomness

Lecture 14

Randomness Extractors
Key Derivation Functions



Randomness is Key!

Security of all cryptographic primitives depends on the
assumption that random samples can be drawn

@ Typically random bit strings (used as keys for block ciphers,
or converted fo prime numbers, group elements, etc. for key
generation in public-key cryptography)

If this assumption is violated, serious security issues

A study in 2012 found too many RSA modulii (N=PQ) on the web
shared a common factor (as revealed by GCD computation)

In libssl, a poor source of randomness was used. In particular, in
Debians version from September 2006 to May 2008, it was
easily predictable.

@ Seriously undermines security. E.g., users with certificates
generated in such systems could be spoofed until certificates
expired/were revoked



Randomness Extractors

@ Consider a PRG which outputs a pseudorandom group element in
some complicated group

@ A standard bit-string representation of a random group
element may not be (pseudo)random

@ Can we efficiently map it to a pseudorandom bit string?
Depends on the group...

@ Suppose a chip for producing random bits shows some
complicated dependencies/biases, but still is highly unpredictable

@ Can we purify it to extract uniform randomness? Depends on
the specific dependencies...

@ A general fool for purifying randomness: Randomness Extractor



Randomness Extractors

@ Takes an input with high unpredictability, and an independent
seed as a “catalyst”, and outputs an (almost) random string

@ Statistical guarantees: output not just pseudorandom, but
statistically (almost) uniform, if input has sufficient entropy

@ 2-Universal Hash Functions (when sufficiently compressing),
where the seed is the hash function

@ "Optimal” in all parameters except seed length
@ Constructions with shorter seeds known

@ e.g. Based on expander graphs



Randomness Extractors

@ Strong extractor: output is random even when the seed for
extraction is revealed

@ 2-UHF is in fact a strong extractor (seed is the hash function)
& “Left-Over Hash Lemma”
@ Useful in key agreement

@ Alice and Bob exchange a non-uniform key, with a lot of
pseudoentropy for Eve (say, g~v)

@ Alice sends a random seed for a strong extractor to Bob, in
the clear

@ Key derivation: Alice and Bob extract a new key, which is
pseudorandom (i.e., indistinguishable from a uniform bit string)



Randomness Extractors

@ Pseudorandomness Extractors (a.k.a. computational extractors):
output is guaranteed only fo be pseudorandom if input has
sufficient (pseudo)entropy

@ Key Derivation Function: Strong pseudorandomness extractor

@ Cannot directly use a block-cipher, because pseudorandomness
required even when the randomly chosen seed is public (“salt”)

@ Extract-Then-Expand: Its enough to extract a key for a PRF

@ Can be based on HMAC or CBC-MAC: Statistical guarantee, if
compression function/block-cipher were a public but
randomly chosen function/permutation

@ Models KDF in IPsecs Internet Key Exchange (IKE) protocol.
HMAC version later standardised as HKDF.



Randomness Extractors

@ Extractors for use in system Random Number Generator
(think /dev/random)

@ Additional issues:

@ Online model, with a variable (and unknown) rate of
entropy accumulation

@ Should recover from compromise due to low entropy
phases (especially in the beginning)

@ Constructions provably secure in such models known

@ Using PRG (e.g., AES in CTR mode), universal hashing and
"pool scheduling” (similar to Fortuna, used in Windows)



Randomness Hardware

@ Originally, analog circuitry for amplifying thermal noise. But
many drawbacks in a digital processor.

[So
@ Nowadays digital circuity as entropy source of—

@ Since the component NOT gates are not idenftical, circuit
needs to be dynamically controlled to make each bit unbiased

@ Switching on and off expected to make the bits independent
® RDRand instruction in Intel and AMD processors

@ Bits from the digital entropy source are first processed using
an (ad hoc) extractor with a fixed seed

® Then used as the seed for a fast PRG (AES in CTR mode)



Randomness Reuse

@ Various cryptographic schemes require that randomness is not
reused

@ E.g.,, IV in a CPA-secure encryption

@ Randomness in Schnorr signature (Recall special soundness:
responses to two challenges given the same initial message
allows extraction of the signing key)

@ But attacks/accidents may force randomness reuse

@ E.g., two instances of a virtual machine starting from the
same snapshot

® Sometimes can mitigate the effect of randomness reuse

@ Synthetic IV: Only effect of using the same IV many times
would be to reveal which messages are equal to which

@ E.g., GCM-SIV mode



Randomness Leakage

® We expect n-bit random strings (nonces, keys, etc.) to have n
bits of entropy (i.e., uniform over all 2" possibilities) even
conditioned on what an adversary knows

@ Or be indistinguishable from that

@ In particular, the random strings should not be leaked outside
the cryptographic process which requests it

@ But often side channels exist

@ E.g., CrossTalk in intel processors (revealed in June 2020):
The output of RDRand (among other things) was stored in a
staging buffer, which processes in other cores could access

@ Leads to extraction of signing keys from within “secure
enclaves” provided by Intel SGX



