
Randomness
Lecture 14

Randomness Extractors

Key Derivation Functions



Randomness is Key!
Security of all cryptographic primitives depends on the 
assumption that random samples can be drawn


Typically random bit strings (used as keys for block ciphers, 
or converted to prime numbers, group elements, etc. for key 
generation in public-key cryptography)


If this assumption is violated, serious security issues


A study in 2012 found too many RSA modulii (N=PQ) on the web 
shared a common factor (as revealed by GCD computation) 


In libssl, a poor source of randomness was used. In particular, in 
Debian’s version from September 2006 to May 2008, it was 
easily predictable.


Seriously undermines security. E.g., users with certificates 
generated in such systems could be spoofed until certificates 
expired/were revoked



Randomness Extractors
Consider a PRG which outputs a pseudorandom group element in 
some complicated group


A standard bit-string representation of a random group 
element may not be (pseudo)random


Can we efficiently map it to a pseudorandom bit string? 
Depends on the group...


Suppose a chip for producing random bits shows some 
complicated dependencies/biases, but still is highly unpredictable


Can we purify it to extract uniform randomness? Depends on 
the specific dependencies...


A general tool for purifying randomness: Randomness Extractor



Randomness Extractors

Takes an input with high unpredictability, and an independent 
seed as a “catalyst”, and outputs an (almost) random string


Statistical guarantees: output not just pseudorandom, but 
statistically (almost) uniform, if input has sufficient entropy


2-Universal Hash Functions (when sufficiently compressing), 
where the seed is the hash function


“Optimal” in all parameters except seed length


Constructions with shorter seeds known


e.g. Based on expander graphs



Randomness Extractors

Strong extractor: output is random even when the seed for 
extraction is revealed


2-UHF is in fact a strong extractor (seed is the hash function)


“Left-Over Hash Lemma”


Useful in key agreement


Alice and Bob exchange a non-uniform key, with a lot of 
pseudoentropy for Eve (say, gxy)


Alice sends a random seed for a strong extractor to Bob, in 
the clear


Key derivation: Alice and Bob extract a new key, which is 
pseudorandom (i.e., indistinguishable from a uniform bit string)



Randomness Extractors
Pseudorandomness Extractors (a.k.a. computational extractors): 
output is guaranteed only to be pseudorandom if input has 
sufficient (pseudo)entropy


Key Derivation Function: Strong pseudorandomness extractor


Cannot directly use a block-cipher, because pseudorandomness 
required even when the randomly chosen seed is public (“salt”)


Extract-Then-Expand: It’s enough to extract a key for a PRF


Can be based on HMAC or CBC-MAC: Statistical guarantee, if 
compression function/block-cipher were a public but 
randomly chosen function/permutation


Models KDF in IPsec’s Internet Key Exchange (IKE) protocol.  
HMAC version later standardised as HKDF.



Randomness Extractors

Extractors for use in system Random Number Generator 
(think /dev/random)


Additional issues:


Online model, with a variable (and unknown) rate of 
entropy accumulation


Should recover from compromise due to low entropy 
phases (especially in the beginning)


Constructions provably secure in such models known 


Using PRG (e.g., AES in CTR mode), universal hashing and 
“pool scheduling”  (similar to Fortuna, used in Windows)



Randomness Hardware

Originally, analog circuitry for amplifying thermal noise. But 
many drawbacks in a digital processor. 


Nowadays digital circuity as entropy source


Since the component NOT gates are not identical, circuit 
needs to be dynamically controlled to make each bit unbiased


Switching on and off expected to make the bits independent


RDRand instruction in Intel and AMD processors


Bits from the digital entropy source are first processed using 
an (ad hoc) extractor with a fixed seed


Then used as the seed for a fast PRG (AES in CTR mode)



Randomness Reuse
Various cryptographic schemes require that randomness is not 
reused


E.g., IV in a CPA-secure encryption


Randomness in Schnorr signature (Recall special soundness: 
responses to two challenges given the same initial message 
allows extraction of the signing key)


But attacks/accidents may force randomness reuse


E.g., two instances of a virtual machine starting from the 
same snapshot


Sometimes can mitigate the effect of randomness reuse


Synthetic IV: Only effect of using the same IV many times 
would be to reveal which messages are equal to which


E.g., GCM-SIV mode



Randomness Leakage

We expect n-bit random strings (nonces, keys, etc.) to have n 
bits of entropy (i.e., uniform over all 2n possibilities) even 
conditioned on what an adversary knows 


Or be indistinguishable from that


In particular, the random strings should not be leaked outside 
the cryptographic process which requests it


But often side channels exist


E.g., CrossTalk in intel processors (revealed in June 2020):  
The output of RDRand (among other things) was stored in a 
staging buffer, which processes in other cores could access 


Leads to extraction of signing keys from within “secure 
enclaves” provided by Intel SGX


