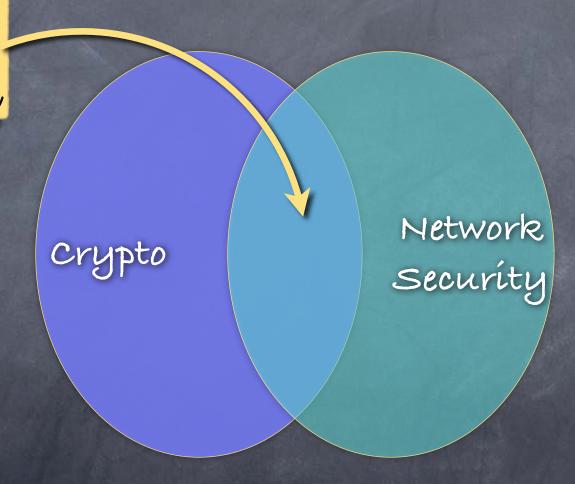
Less theoretical, component with a hands-on component

Renewed

Cryptography and Network Security - I

Lecture 0

Manoj Prabhakaran


IIT Bombay

Security

In this course: Cryptography as used in network security Network Devices People

Cryptography & Security

In this course:
Cryptography
as used in
network security

In the News

"Properly implemented strong crypto systems are one of the few things that you can rely on."

"... Unfortunately, endpoint security is so terrifically weak that [the adversary] can frequently find ways around it."

What is Cryptography?

Access

It's all about controlling access to information

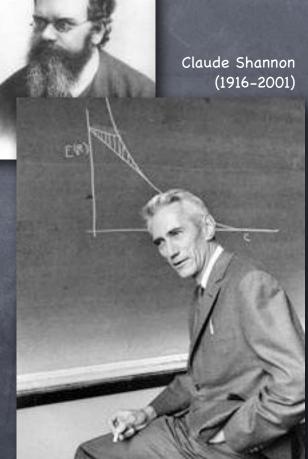
A tool for enforcing policies on who can learn and/or influence information

Do we know what we are talking about?

What is information?

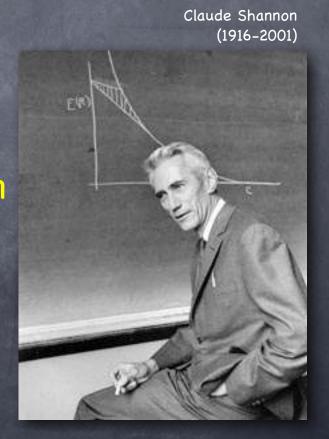
Or rather the lack of it?

Uncertainty


Measured using Entropy

Borrowed from thermodynamics

An inherently "probabilistic" notion

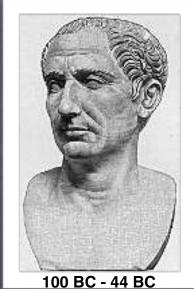

Rudolf Clausius (1822-1888)

Ludwig Boltzmann (1844-1906)

What is information?

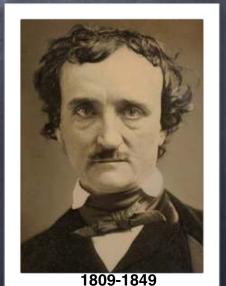
- Information Theory: ways to quantify information
 - Application 1: to study efficiency of communication (compression, error-correction)
 - Application 2: to study the possibility of secret communication
 - The latter turned out to be a relatively easy question! Secret communication possible only if (an equally long) secret key is shared ahead of time

Access to Information


- A second look
- Information at hand may still not be "accessible" if it is hard to work with it
 - Computation!
- Shannon's information may reduce uncertainty only for computationally all-powerful parties

"Old" Cryptography

Scytale (ancient Greece)


Caesar Cipher

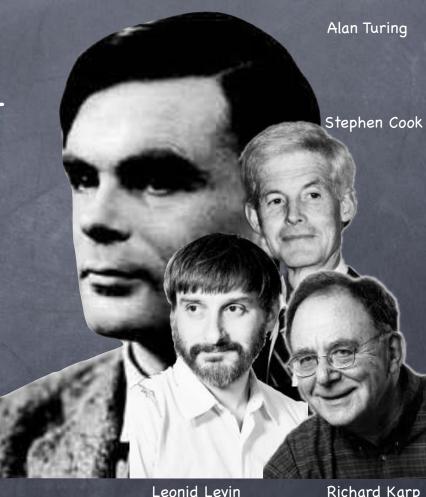
Cryptanalysis (simple frequency analysis) of Caesar cipher by Al-Kindi

"Human ingenuity cannot concoct a cypher which human ingenuity cannot resolve"

-Edgar Allan Poe

Modern Cryptography

- A principled approach to understanding what is possible and what is not
- Need definitions of security
 - From Shannon's definition, we already know "unbreakable encryption" exists (just not very efficient or usable)
 - With a weaker definition requiring security only against computationally feasible attacks, can we get more useful encryption?
 - Or was Poe right?
- Need to understand the limitations of computation


Computational Complexity

A systematic study of what computationally bounded parties can and cannot do

A young and rich field

Much known, much more unknown

Much "believed"

Richard Karp

Basis of the Modern Theory of Cryptography

Compressed Secret-Keys

- Impossible in the information-theoretic sense: a <u>truly random</u> string cannot be compressed
 - But possible against computationally bounded players: use <u>pseudo-random</u> strings!
- Pseudo-random number generator
 - a.k.a Stream Cipher
 - Generate a long string of random-looking bits from a short random seed

Manuel Blum

Andy Yao

The Public-Key Revolution

- "Non-Secret Encryption"
 - No a priori shared secrets
 - Instead, a public key. Anyone can create encryptions, only the creator of the key can decrypt!
- Publicly verifiable digital signatures
- Forms the backbone of today's secure communication

Merkle, Hellman, Diffie

Shamir, Rivest, Adleman

Crypto-Mania

- Public-Key cryptography and beyond!
- Secret computation: collaboration among mutually distrusting parties
 - © Compute on distributed data, without revealing their private information to each other
 - Compute on encrypted data
- And other fancy things... with sophisticated control over more complex "access" to information
- Do it all faster, better, more conveniently and more securely (or find out if one cannot). And also make sure we know what we are trying to do.

Turing Awards

For theoretical cryptographers:

(Merkle) Hellman & Diffie Turing Award '15

Goldwasser & Micali Turing Award '12

Manuel Blum
Turing Award '95

Turing Award '00

Shamir , Rivest & Adleman Turing Award '02

In This Course Cryptography

Secure communication

	Shared-Key	Public-Key
Encryption	SKE	PKE
Authentication	MAC	Signature

- Zero-Knowledge Proofs: a basic introduction
- Mathematical background: Some Probability, a little bit of Groups and Number Theory, a lot of definitions and a little bit of proofs
- Hands-on content: playing around with software tools

In This Course Network Security

- A peek into TLS, IPSec, ...
- Issues not discussed in this course:
 - Complexity due to support for extra efficiency/backward compatibility/new features
 - Buggy implementations (software & hardware)
 - Gap between abstract and real-life models: side-channels
 - Endpoint security
 - Often informal/ill-specified security goals
 - Human factors, trust, identity, current and legacy technology, ...

Course Logistics

- Please attend all the lectures
 - Some of the lecture sessions will be for hands-on labs
- Grading:
 - Mid/End-semester Exams (60%)

 - © Course project (15%)
 - Labs (10%)
- See Moodle for announcements