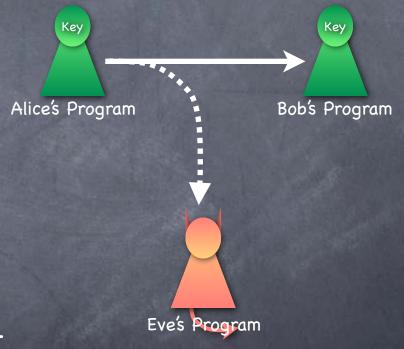
Our First Encounter with Encryption

Lecture 2

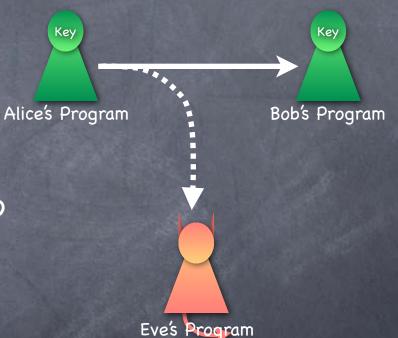
Security Definition Paradigms: Simulation & Indistinguishability

Roadmap

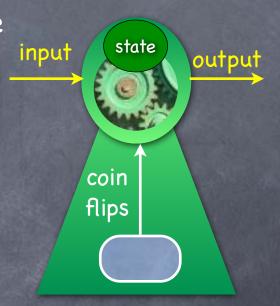

First, Symmetric Key Encryption

	Shared-Key	Public-Key
Encryption	SKE	PKE
Authentication	MAC	Signature

- Defining the problem
 - We'll do it elaborately (will be quicker later on)
- Solving the problem
- ▼ Today: one-time SKE

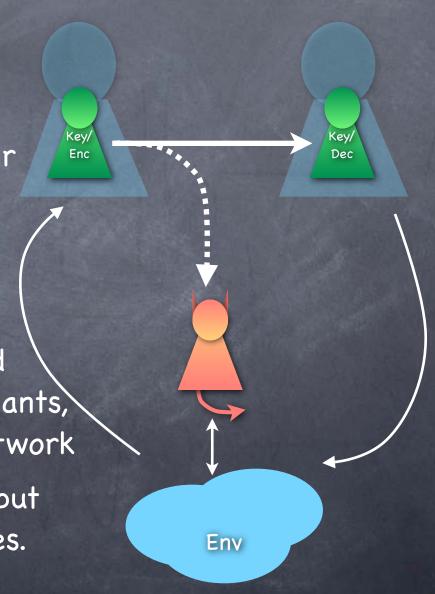

Building the Model

- Alice, Bob and Eve. Alice and Bob share a key (a bit string)
- Alice wants Bob to learn a message, "without Eve learning it"
- Alice can send out a bit string on the channel. Bob and Eve both get it

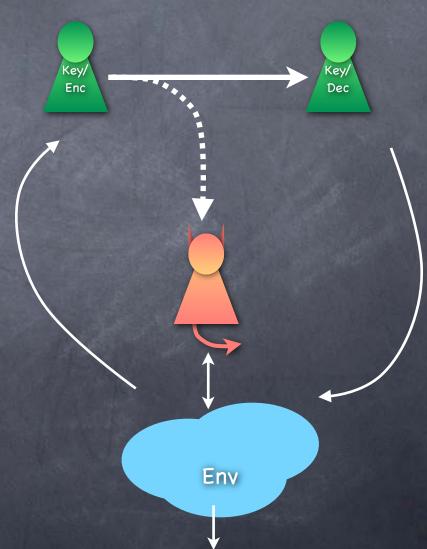

Encryption: Syntax

- Three algorithms
 - Key Generation: What Alice and Bob do a priori, for creating the shared secret key
 - Encryption: What Alice does with the message and the key to obtain a "ciphertext"
 - Decryption: What Bob does with the ciphertext and the key to get the message out of it
- All of these are (probabilistic) computations

Modelling Computation

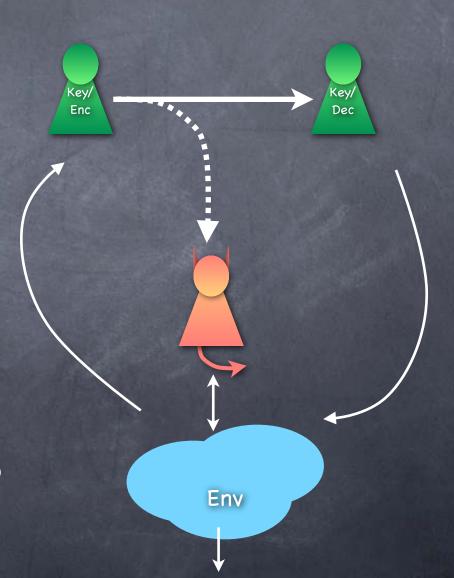

- In our model (standard model) parties are programs (computations, say Turing Machines)
- Effect of computation limited to be in a blackbox manner (only through input/ output functionality)
 - No side-information (timing, electric signals, ...) unless explicitly modelled
 - Can be probabilistic
 - Sometimes stateful

Ideal coin flips: If n coins flipped, each outcome has probability 2-n

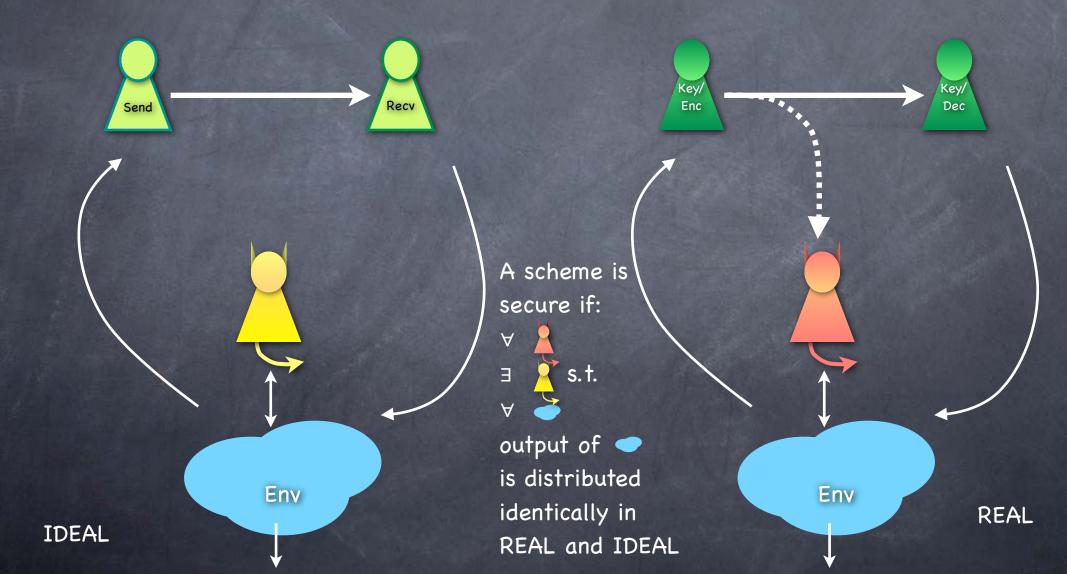

The Environment

- Where does the message come from?
 - Eve might already have partial information about the message, or might receive such information later
 - In fact, Eve might influence the choice of the message
- The environment
 - Includes the operating systems and other programs run by the participants, as well as other parties, if in a network
 - Abstract entity from which the input comes and to which the output goes. Arbitrarily influenced by Eve

Defining Security


- Eve shouldn't be able to produce any "bad effects" in any environment
 - Or increase the probability of "bad effects"
- Effects in the environment: modeled as a bit in the environment (called the output bit)
- What is bad?
 - Anything that Eve couldn't have caused if an "ideal channel" was used

Defining Security


The REAL/IDEAL Paradigm

- Eve shouldn't produce any more effects than she could have in the ideal world
 - IDEAL world: Message sent over a (physically) secure channel. No encryption in this world.
 - REAL world: Using encryption
 - Encryption is secure if whatever Eve can do in the REAL world (using some strategy), she can do in the IDEAL world too (using an appropriate strategy)

Defining Security

The REAL/IDEAL Paradigm

Ready to go...

- REAL/IDEAL (a.k.a simulation-based) security forms the basic template for a large variety of security definitions
- Will see 3 levels of security for symmetric-key encryption
 - Security of "one-time encryption" < today</p>
 - Security of (muti-message) encryption
 - Security against "active attacks"
- Will also see alternate (but essentially equivalent) security definitions

Onetime Encryption The Syntax

- Shared-key (Private-key) Encryption
 - Key Generation: Randomized
 - \bullet K \leftarrow %, uniformly randomly drawn from the key-space (or according to a key-distribution)
 - Encryption: Deterministic
 Will change later

• Enc: $\mathcal{M} \times \mathcal{K} \rightarrow \mathcal{C}$

Will change later (for more-than-once encryption)

- Decryption: Deterministic
 - Dec: $C \times \mathcal{H} \rightarrow \mathcal{M}$

Onetime Encryption Security Definitions

- 3 approaches to defining security
 - Simplest: Using information-theoretic "secrecy": Eavesdropper's view is independent of the message
 - More general: "Game-based" definition
 - Most general: Using the REAL/IDEAL paradigm

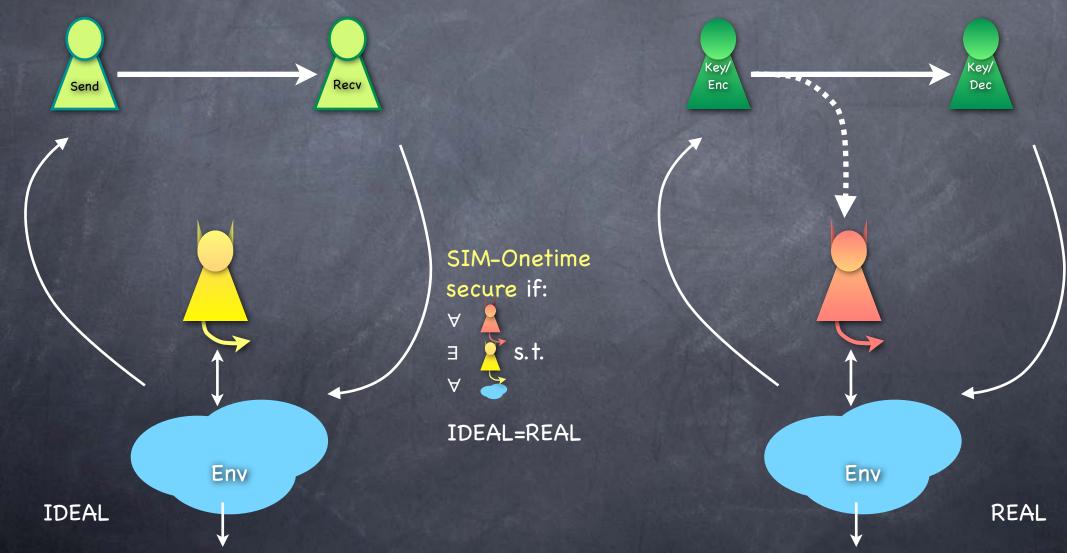
Security of Encryption	Information theoretic	Game-based	Simulation-based
One-time	Perfect secrecy & Perfect correctness	IND-Onetime & Perfect correctness	SIM-Onetime today
Multi-msg		IND-CPA & correctness	SIM-CPA
Active/multi-msg		IND-CCA & correctness	SIM-CCA

Onetime Encryption

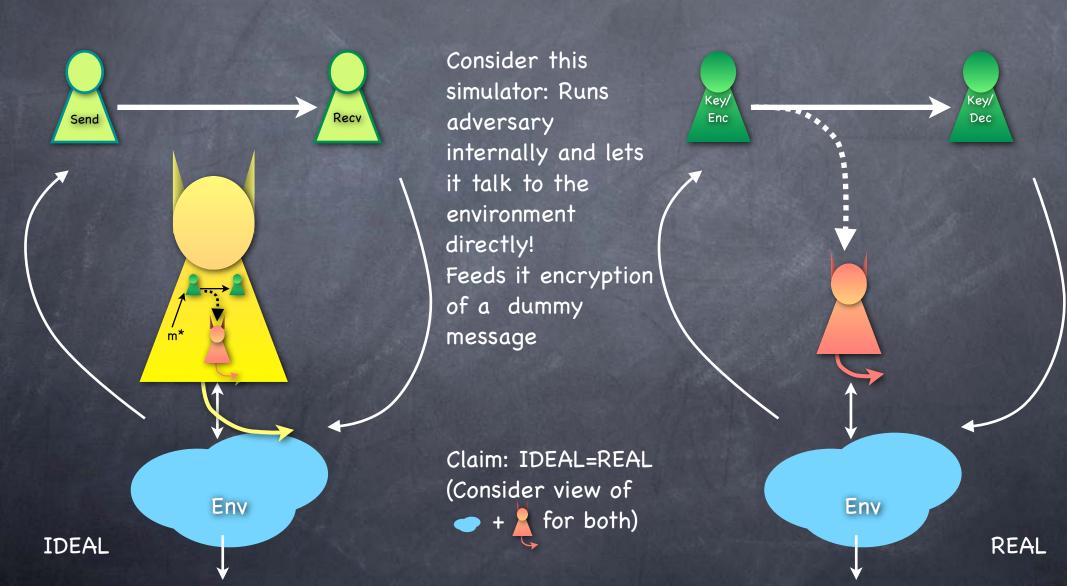
Perfect Secrecy A (2,2)-secret-sharing scheme:
K and Enc(m,K) are shares of m

- Perfect secrecy: ∀ m, m' ∈ M
 - \bullet {Enc(m,K)}_{K \leftarrow KeyGen} = {Enc(m',K)}_{K \leftarrow KeyGen}
- Distribution of the ciphertext is defined by the randomness in the key
- In addition, require correctness
 - ∀ m, K, Dec(Enc(m,K), K) = m
- \odot E.g. One-time pad: $\mathcal{M} = \mathcal{K} = \mathcal{C} = \{0,1\}^n$ and $Enc(m,K) = m \oplus K, Dec(c,K) = c \oplus K$
 - More generally $\mathcal{M} = \mathcal{K} = \mathcal{C} = \mathcal{G}$ (a finite group) and Enc(m,K) = m+K, Dec(c,K) = c-K

91	0	1	2	3
а	×	У	У	Z
Ь	У	X	Z	У


Assuming K uniformly drawn from ${\mathscr K}$

 $Pr[Enc(a,K)=x] = \frac{1}{4},$ $Pr[Enc(a,K)=y] = \frac{1}{2}$ $Pr[Enc(a,K)=z] = \frac{1}{4}$.

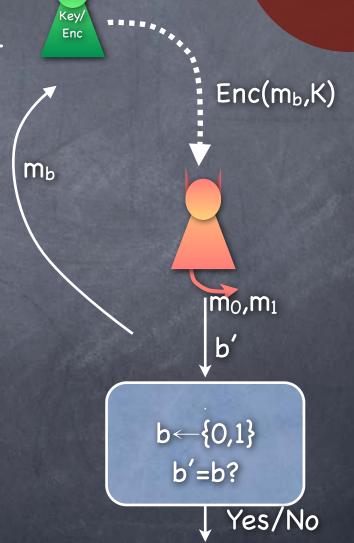

Same for Enc(b,K).

Onetime Encryption Equivalent to perfect secrecy SIM-Onetime Security + perfect correctness

Class of environments which send only one message

Perfect Secrecy + Correctness ⇒ SIM-Onetime Security

Implicit Details


- Random coins used by the encryption scheme is kept private within the programs of the scheme (KeyGen, Enc, Dec)
 - If key is used for anything else (i.e., leaked to the environment) no more guarantees
 - In particular, key can't be the message (no "circularity")
- In REAL, Eve+Env's only inputs are ciphertext and Bob's output
 - In particular no timing attacks modelled
- Ideal-Eve allowed to learn the fact that a message is sent
- Message space is finite and known to Eve (and Ideal-Eve)
 - Alternately, if message length is variable, it is given out to Ideal-Eve in IDEAL as well

Onetime Encryption

IND-Onetime Security

- IND-Onetime Experiment
 - Experiment picks a random bit b. It also runs KeyGen to get a key K
 - \bullet Adversary sends two messages m_0 , m_1 to the experiment
 - Experiment replies with Enc(m_b,K)
 - Adversary returns a guess b'
 - Experiments outputs 1 iff b'=b
- IND-Onetime secure if for every adversary, Pr[b'=b] = 1/2

Equivalent to perfect secrecy

Perspective on Definitions

- Technical" vs. "Convincing"
- For simple scenarios technical definitions could be convincing
 - e.g. Perfect Secrecy
- IND- definitions tend to be technical: more low-level details, but may not make the big picture clear. Could have "weaknesses"
- SIM- definitions give the big picture, but may not give details of what is involved in satisfying it. Could be "too strong"
- Best of both worlds when they are equivalent: use IND- definition while proving security of an encryption scheme; use SIM- definition to give security guarantees to high-level apps