
Symmetric-Key Encryption:
constructions

Lecture 5
PRG, Stream Cipher
PRF, Block Cipher

Expand a short random seed to a “random-looking” string

First, PRG with fixed stretch: Gk: {0,1}k ³ {0,1}n(k), n(k) > k

How does one define random-looking?

Next-Bit Unpredictability: PPT adversary can’t predict ith bit
of a sample from its first (i-1) bits (for every i * {1,...,n})

A “more satisfactory” definition:

PPT adversary can’t distinguish between a sample from
{Gk(x)}x±{0,1}k and one from {0,1}n(k)

{Gk(x)}x±{0,1}k j Un(k)

The two definitions are equivalent!

Pseudorandomness
Generator (PRG)

RE
CA

LL

General PRG from
1-Bit Stretch PRG

Increasing the stretch

Can use part of the PRG output as a new seed

If intermediate seeds are never output, can keep
stretching on demand (for any “polynomial length”)

PRG with variable length output yields
a stream cipher

G
k k

1

Rk

G G G G...GRk

One-bit stretch PRG, Gk: {0,1}k ³ {0,1}k+1

will build
later

Why is
this a PRG?

A “hybrid
argument”

K

m

(stream)

SC

One-time secure SKE
with a PRG

One-time Encryption with a stream-cipher:

Generate a one-time pad from a short seed

Can share just the seed as the key

Mask message with the pseudorandom pad

Decryption is symmetric: plaintext & ciphertext
interchanged

PRG used here can spit out bits on demand, so
the message can arrive bit by bit, and the
length of the message doesn’t have to be a
priori fixed

Security: indistinguishability from using a truly
random pad (coming up)

PRG ·K

m

Enc
(stream)

PRG ·
K

Dec m

Stream Ciphers
Stream ciphers in practice

Naturally useful for onetime (stream) encryption,
in protocols where a key is established per session

Many popular candidates:

RC4: Obsolete (but popular). Designed in 1987. Leaked (and
broken) in 1994. Still used in BitTorrent, and supported as
an option in some protocols.

eSTREAM portfolio:

NIST recommendation: AES in an appropriate mode (later)

Profile 1
(software)

HC-128, Rabbit, Salsa20/12, SOSEMANUK 128 bit keys

Profile 2
(hardware)

Grain, MICKEY, Trivium 80 bit keys

PRG ·K

m

Enc
(stream)

One-time secure SKE
with a PRG

In IDEAL experiment, consider simulator that
uses a truly random string as the ciphertext

To show REAL j IDEAL

Consider an intermediate world, HYBRID:

Like REAL, but Enc/Dec use a (long) truly random pad,
instead of the output from the stream-cipher

HYBRID = IDEAL (recall perfect security of one-time pad)

Claim: REAL j HYBRID

Consider the experiments as a system that accepts the pad
from outside (R’ = PRG(K) for random K, or truly random R)
and outputs the environment’s output. This system is PPT,
and so can’t distinguish pseudorandom from random.

PRG ·K

m

Enc
(stream)

One-time secure SKE
with a PRG

REAL

Env

PRG

j

Env

Rand

HYBIRD

G is a PRG if {Gk(x)}x±{0,1}k j Un(k) and G PPT

A PRG can be used to obtain a one-time
CPA-secure SKE

Stream cipher: Using a PRG without an a
priori bound n(k) on the output length

Security: The pad produced by the PRG is
indistinguishable from a truly random pad

Hence the scheme is indistinguishable from
the one-time pad scheme (which is one-
time CPA secure for fixed length messages)

Next question: Multiple-message SKE?

PRG ·K

m

Enc
(stream)

PRG ·
K

Dec m

One-time secure SKE
with a PRG: Summary

Beyond One-Time
Need to make sure that the same part of the one-time pad is
never reused

Sender and receiver will need to maintain state and stay in
sync (indicating how much of the pad has already been
used)

Or only sender maintains the index, but sends it to the
receiver. Then receiver will need to run the stream-
cipher to get to that index.

A PRG with direct access to any part of the output
stream?

Pseudo Random Function (PRF)

Pseudorandom Function
(PRF)

A compact representation of an exponentially long
(pseudorandom) string

Allows “random-access” (instead of just sequential access)

A function F(s;i) outputs the ith block of the
pseudorandom string corresponding to seed s

Exponentially many blocks (i.e., large domain for i)

Pseudorandom Function

Need to define pseudorandomness for a function (not a
string)

Fs

R

MUX

Pseudorandom Function
(PRF)

F: {0,1}k×{0,1}m(k) ³{0,1}n(k) is a PRF if all PPT
adversaries have negligible advantage in
the PRF experiment

Adversary given oracle access to either
F with a random seed, or a random
function R: {0,1}m(k) ³{0,1}n(k). Needs to
guess which.

Note: Only 2k seeds for F

But 2^(n2m) functions R

PRF stretches k bits to n2m bits

b’

Yes/No

b

b±{0,1}

b’=b?

Pseudorandom Function
(PRF)

A PRF can be constructed from any PRG

K00

K01

K10

K11

G

G

G
K000

K001

G
K010

K011

G
K100

K101

G
K110

K111r

Kr...GK

K0

K1

G is a
length-
doubling

PRG

Pseudorandom Function
(PRF)

Not blazing fast: needs |r| evaluations of a PRG

Faster constructions based on specific number-theoretic
computational complexity assumptions

Fast heuristic constructions

PRF in practice: Block Cipher

Extra features/requirements:

Permutation: input block (r) to output block

Key can be used as an inversion trapdoor

Pseudorandomness even with access to inversion

BC
K

r

A PRF can be constructed from any PRG

CPA-secure SKE with
a PRF (or Block Cipher)

Suppose Alice and Bob have shared a key (seed)
for a block-cipher (or PRF) BC

For each encryption, Alice will pick a fresh
pseudorandom pad, by picking a new value r and
setting pad=BCK(r)

Bob needs to be able to generate the same pad,
so Alice sends r (in the clear, as part of the
ciphertext) to Bob

Even if Eve sees r, PRF security guarantees that
BCK(r) is pseudorandom. (In fact, Eve could have
picked r, as long as we ensure no r is reused.)

How to pick a new r?

Pick at random!

BC ·
K

m

(a block)Enc

r

BC ·
K

Dec m

Weak PRF
Note: CPA-Security relied on the inputs to the
PRF being just distinct (not random)

But if the input is indeed random, a weaker
guarantee on PRF suffices

Weak PRF: Similar to PRF, but the inputs to the
oracle are chosen randomly

As before, adversary can see both the input
and the output

As before, adversary can see as many input-
output pairs as it wants

Weak PRF suffices for CPA-secure SKE of single-
block messages

b’

Yes/No

b

b±{0,1}

b’=b?

Random
queries

Fs

R

MUX

How to encrypt a long message (multiple blocks)?

Chop the message into blocks and independently encrypt
each block as before?

Works, but ciphertext size is double that of the plaintext
(if r is one-block long)

Extend output length of a PRF (w/o increasing input length)

CPA-secure SKE
with a Block Cipher

FK

r,1

FK FK

 r,2 r,t

...

r

Output is indistinguishable from t random blocks, provided all the
inputs to FK remain distinct (because F itself is a PRF)

FK FK FK

r

...

r
input length

slightly
decreased,

based on an a
priori limit on t

sequential

Only a
weak PRF.
(Why?)

Suffices.

m1
·

m2
·

mt
·

c1 c2 ct

r
Output Feedback (OFB) mode: Extend the
pseudorandom output using the first
construction in the previous slide

Counter (CTR) Mode: Similar idea as in the
second construction. But no a priori limit on
number of blocks in a message.

Security from low likelihood of (r+1,...,r+t)
running into (r’+1,...,r’+t’)

Cipher Block Chaining (CBC) mode:
Sequential encryption. Decryption uses FK-1.
Ciphertext an integral number of blocks.

m1 m2 mt
r

FK FK FK

· · ·

c1 c2 ct

...

FK

r+1

FK FK

 r+2 r+t

...

Various “modes” of operation of a Block-cipher (i.e., encryption
schemes using a block-cipher). All with one block overhead.

CPA-secure SKE
with a Block Cipher

Weak PRF
(Why?)

