Symmetric-Key Encryption:
constructions

Lecture 5
PRG, Stream Cipher
PRF, Block Cipher

Pseudorandomness
Generator (PRG)

@ Expand a short random seed to a “random-looking” string

@ First, PRG with fixed stretch: Gg: {0,1}k — {0,1}n(K), n(k) > k

® How does one define random-looking?

@ Next-Bit Unpredictability: PPT adversary cant predict ith bit
of a sample from its first (i-1) bits (for every i € {l,...,n})

@ A "more satisfactory” definition:

@ PPT adversary cant distinguish between a sample from
{Gk(X)}x«i0,13 and one from {0,1}n(k)

| {Gk(X)}x—f0.3¢ = Un)

@ The two definitions are equivalent!

General PRG from

will build
1-Bit Stretfch PRG ater
K
@ One-bit stretch PRG, Gk: {0,13k — {0,1}k+1 Jaidd G
1
@ Increasing the stretch —l
(.
@ Can use part of the PRG output as a new seed fhi\;vzyP:G’J
sia 3
=l GGGl GET | G > A “hybrid
argument”
A\ v \ 4 \ 4 \ 4 L)
@ If intermediate seeds are never outpuf, can keep m
stretching on demand (for any “polynomial length”) (S*riam)
@ PRG with variable length output yields A
Ki—: SC

a stream cipher

One-time secure SKE
with a PRG

One-time Encryption with a stream-cipher: m

® Generate a one-time pad from a short seed ENCHE. (STream)

@ Can share just the seed as the ke
| ; K}>|PRG|-® |

® Mask message with the pseudorandom pad :

Decryption is symmetric: plaintext & ciphertext

inferchanged Y

PRG used here can spit out bits on demand, so
the message can arrive bit by bit, and the : :
length of the message doesnt have to be a S _) PRG it
priori fixed 5

Security: indistinguishability from using a truly Dec
random pad (coming up)

Stream Ciphers

@ Stream ciphers in practice

m
@ Naturally useful for onetime (stream) encryption, (stream)
. , : L [1C
in protocols where a key is established per session ;. i e
@ Many popular candidates: KI>PRG ~®

@ RC4: Obsolete (but popular). Designed in 1987. Leaked (and
broken) in 1994. Still used in BitTorrent, and supported as
an option in some protocols.

Profile 1

& eSTREAM portfolio: kel

HC-128, Rabbit, Salsa20/12, SOSEMANUK 128 bit keys

@ NIST recommendation: AES in an appropriate mode (later)

One-time secure SKE
with a PRG

@ In IDEAL experiment, consider simulator that m
uses a truly random string as the ciphertext e
@ To show REAL ~ IDEAL
i | . K}>{PRG |- |
@ Consider an infermediate world, HYBRID:

instead of the oufput from the stream-cipher \
@ HYBRID = IDEAL (recall perfect security of one-time pad)
@ Claim: REAL ~ HYBRID

@ Consider the experiments as a system that accepts the pad
from outside (R” = PRG(K) for random K, or truly random R)
and outputs the environments output. This system is PPT,
and so cant distinguish pseudorandom from random.

One-tfime secure SKE
with a PRG

REAL ~ HYBIRD

One-time secure SKE
with a PRG: Summary
o G is a PRG if and 6 PPT Enc_ T

@ A PRG can be used to obtain a one-time ; PRG _>é
CPA-secure SKE

@ Stream cipher: Using a PRG without an a
priori bound n(k) on the output length Y

@ Security: The pad produced by the PRG is
indistinguishable from a truly random pad

@ Hence the scheme is indistinguishable from [k |- %
the one-time pad scheme (which is one- PRG |~
time CPA secure for fixed length messages) : :

@ Next question: Multiple-message SKE? Dec

Beyond One-Time

@ Need fo make sure that the same part of the one-time pad is
never reused

® Sender and receiver will need to maintain state and stay in
sync (indicating how much of the pad has already been
used)

@ Or only sender maintains the index, but sends it fo the
receiver. Then receiver will need fo run the stream-
cipher to get to that index.

@ A PRG with direct access to any part of the output
stream?

@ Pseudo Random Function (PRF)

Pseudorandom Function
(PRF)

@ A compact representation of an exponentially long
(pseudorandom) string

@ Allows “random-access” (instead of just sequential access)

@ A function F(s;i) outputs the ith block of the
pseudorandom string corresponding fo seed s

@ Exponentially many blocks (i.e., large domain for i)
@ Pseudorandom Function

@ Need to define pseudorandomness for a function (not a
string)

Pseudorandom Function
(PRF)

@ F: {0,1}xx{0,1}m(k) —{0,1}7K) is a PRF if all PPT \
S
adversaries have negligible advantage in @
the PRF experiment g w
R
@ Adversary given oracle access fo either -
F with a random seed, or a random ‘
function R: {0,1}m(k) —{0,1}n(k), Needs to b
guess which. l
bl
@ Note: Only 2k seeds for F
b<—{0,1}
® But 27(n2m) functions R b'=b?
lYes/No

@ PRF stretches k bits to n2m bits

Pseudorandom Function
(PRF)

@ A PRF can be constructed from any PRG

Gisa
length-
doubling

PRG N\

K -l

Pseudorandom Function
(PRF)

@ A PRF can be constructed from any PRG
@ Not blazing fast: needs |r| evaluations of a PRG

@ Faster constructions based on specific number-theoretic

computational complexity assumptions

@ Fast heuristic constructions

@ PRF in practice: Block Cipher Ki—
—_—

@ Extra features/requirements:

BC

@ Permutation: input block (r) fo output block [T
@ Key can be used as an inversion trapdoor
® Pseudorandomness even with access to inversion

CPA-secure SKE with
a PRF (or Block Cipher)

@ Suppose Alice and Bob have shared a key (seed)
for a block-cipher (or PRF) BC

@ For each encryption, Alice will pick a fresh
pseudorandom pad, by picking a new value r and
setting pad=BCk(r)

@ Bob needs to be able to generate the same pad,

so Alice sends r (in the clear, as part of the
ciphertext) to Bob

@ Even if Eve sees r, PRF security guarantees that
BCk(r) is pseudorandom. (In fact, Eve could have
picked 1, as long as we ensure no r is reused.)

@ How to pick a new r?
@ Pick at random!

Weak PRF

® Note: CPA-Security relied on the inputs fo the
PRF being just distinct (not random A
gl () Fo \ /

@ But if the input is indeed random, a weaker / e
guarantee on PRF suffices R i

A

@ As before, adversary can see both the input
and the output lb’

® Weak PRF: Similar to PRF, but the inputs to the
oracle are chosen randomly

@ As before, adversary can see as many input- [b<—10,1; j
output pairs as it wants b'=b?
lYes/No

® Weak PRF suffices for CPA-secure SKE of single-
block messages

CPA-secure SKE
with a Block Cipher

@ How to encrypt a long message (multiple blocks)?

@ Chop the message into blocks and independently encrypt
each block as before?

® Works, but ciphertext size is double that of the plaintext
(if r is one-block long)

@ Extend output length of a PRF (w/o mcreasmg mpu’r Ieng’rh)

g

r
i

[=

gsequenhal)

’

v

\4

v

Suffices.
1\ Y,

Only a

weak PRF.

(Why?)

)

r,’rl

Fk

v

/ \

N

input length
slightly
decreased,
based on an a

priori limit on 1

N

y

@ Output is indistinguishable from t random blocks, provided all the

inputs to Fx remain distinct (because F itself is a PRF)

CPA-secure SKE
with a Block Cipher

@ Various “modes” of operation of a Block-cipher (i.e., encryption

schemes using a block-cipher). All with one block overhead. [Weak PRF]
(Why?)

@ Output Feedback (OFB) mode: Extend the ! J

pseudorandom output using the first
construction in the previous slide

@ Counter (CTR) Mode: Similar idea as in the m:

D @D D
second construction. But no a priori limit on ! iy |
number of blocks in a message. ¢ C2 Ct
@ Security from low likelihood of (r+l,..,r+t) ., -)

running into (r'+1,..,r'+t") g ,$ _,$
@ Cipher Block Chaining (CBC) mode: ' !

!
Sequential encryption. Decryption uses Fil. Fk Fk
Ciphertext an integral number of blocks. \ T

C

