Symmetric-Key Encryption: One-Way Functions

Lecture 6
PRG from One-Way Permutations

RECALL

Story So far

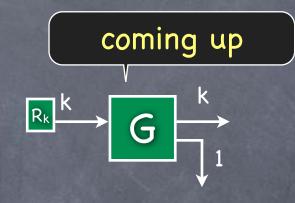
- PRG (i.e., a Stream Cipher) for one-time SKE
 - "Mode of operation": msg ⊕ pseudorandom pad
- PRF (i.e., a Block Cipher) for full-fledged SKE
 - Many standard modes of operation:
 OFB, CTR, CBC, ...
 - All provably CPA-secure if the Block Cipher is a PRF (or PRP with trapdoor, for CBC). CTR mode is recommended (most efficient)

Enc

m

- In practice, fast/complex constructions for Block Ciphers
 - E.g. 3DES, AES, Twofish, ...
- But in principle, a PRF can be securely built from a PRG

PRG

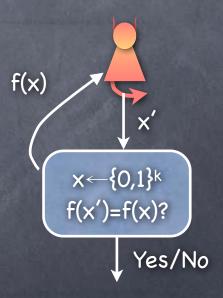


- Can build a PRG from a one-bit stretch PRG, G_k : {0,1}^k → {0,1}^{k+1}
 - Can use part of the PRG output as a new seed

Stream cipher: the intermediate seeds are never output, can keep stretching on demand (for any "polynomial length")

One-Way Function

- $f_k: \{0,1\}^k \rightarrow \{0,1\}^{n(k)}$ is a one-way function (OWF) if
 - f is polynomial time computable
 - For all (non-uniform) PPT adversary, probability of success in the "OWF experiment" is negligible
 - Note: x may not be <u>completely</u> hidden by f(x)



- Integer factorization:
 - \circ $f_{\text{mult}}(x,y) = x \cdot y$
 - Input distribution: (x,y) random k-bit primes
 - Fact: taking input domain to be the set of all k-bit integers, with input distribution being uniform over it, will also work (if k-bit primes distribution works)
 - In that case, it is important that we require |x|=|y|=k, not just |x·y|=2k (otherwise, 2 is a valid factor of x.y with 3/4 probability)

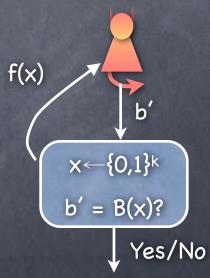
- Solving Subset Sum:
 - $f_{subsum}(x_1...x_k, S) = (x_1...x_k, \sum_{i \in S} x_i)$
 - **3** Input distribution: x_i k-bit integers, $S \subseteq \{1...k\}$. Uniform
 - Inverting f_{subsum} known to be NP-hard, but assuming that it is a OWF is "stronger" than assuming P≠NP
- Note: (x₁,...,x_k) is a "public parameter" (given as part of the output to be inverted)
- OWF Collection: A collection of subset sum problems, all with the same public parameter (the rest of the input is independently sampled)

- Goldreich's Candidate:
 - $f_{Goldreich}(x, S_1,...,S_n, P) = (P(x|_{S_1}),...,P(x|_{S_n}),S_1,...,S_n, P)$
 - $x \in \{0,1\}^k$, S_i⊆[k] with |S_i|=d, P: $\{0,1\}^d \rightarrow \{0,1\}$, and x|_S stands for x restricted to indices in S
 - Input distribution: uniformly random with the requisite structure
- OWF Collection: $(S_1,...,S_n,P)$ is the public parameter

- Rabin OWF: $f_{Rabin}(x; n) = (x^2 \mod n, n)$, where n = pq, and p, q are random k-bit primes, and x is uniform from $\{0...n\}$
 - OWF collection: public parameter n
- More: e.g, Discrete Logarithm (public parameter: a group & generator), RSA function (public parameter: n=pq & an exponent e).
 - Later

Hardcore Predicate

- OWFs provide no hiding property that can be readily used
- E.g. every single bit of (random) x may be significantly predictable from f(x), even if f is a OWF [Exercise]
- Hardcore predicate associated with f: a function B such that B(x) remains "completely" hidden given f(x)



Hardcore Predicates

- For candidate OWFs, often hardcore predicates known
 - e.g. if $f_{Rabin}(x;n)$ is a OWF, then LSB(x) is a hardcore predicate for it
 - Reduction: Given an algorithm for finding LSB(x) from $f_{Rabin}(x;n)$ for random x, one can use it (efficiently) to invert f_{Rabin}

Goldreich-Levin Predicate

- Given any OWF f, can slightly modify it to get a OWF gf such that
 - gf has a simple hardcore predicate
 - gf is almost as efficient as f; is a permutation if f is one
- $g_f(x,r) = (f(x), r), \text{ where } |r| = |x|$
 - Input distribution: x as for f, and r independently random
- \odot GL-predicate: $B(x,r) = \langle x,r \rangle$ (dot product of bit vectors)
 - Can show that a predictor of B(x,r) with non-negligible advantage can be turned into an inversion algorithm for f
 - Predictor for B(x,r) is a "noisy channel" through which x, encoded as $(<x,0>,<x,1>...<x,2^{|x|}-1>)$ (Walsh-Hadamard code), is transmitted. Can efficiently recover x by error-correction (local list decoding).

PRG from One-Way Permutations

 $oldsymbol{\circ}$ One-bit stretch PRG, G_k : $\{0,1\}^k \rightarrow \{0,1\}^{k+1}$

- \circ G(x) = f(x) \circ B(x)
- Where $f: \{0,1\}^k \to \{0,1\}^k$ is a one-way <u>permutation</u>, and B a hardcore predicate for f

 bijection
- O Claim: G is a PRG
 - For a random x, f(x) is also random (because permutation), and hence all of f(x) is next-bit unpredictable.
 - B is a hardcore predicate, so B(x) remains unpredictable after seeing f(x)

Summary

- OWF: a very simple cryptographic primitive with several candidates
- Every OWF/OWP has a hardcore predicate associated with it (Goldreich-Levin)
- PRG from a OWP and a hardcore predicate for it
 - A PRG can be constructed from a OWF too, but more complicated. (And, some candidate OWFs are anyway permutations.)
- Last time: PRF from PRG
- PRG can be used as a stream-cipher (for one-time CPA secure SKE), and a PRF can be used as a block-cipher (for full-fledged CPA secure SKE)