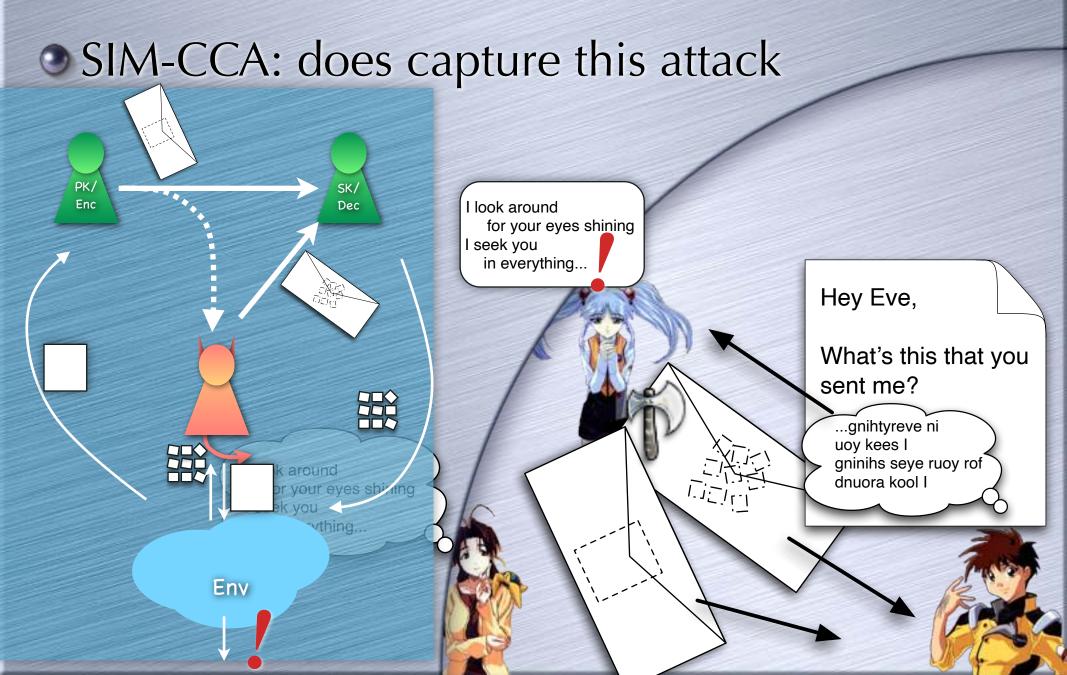

Public-Key Cryptography

Lecture 9 CCA Secure PKE Hybrid Encryption

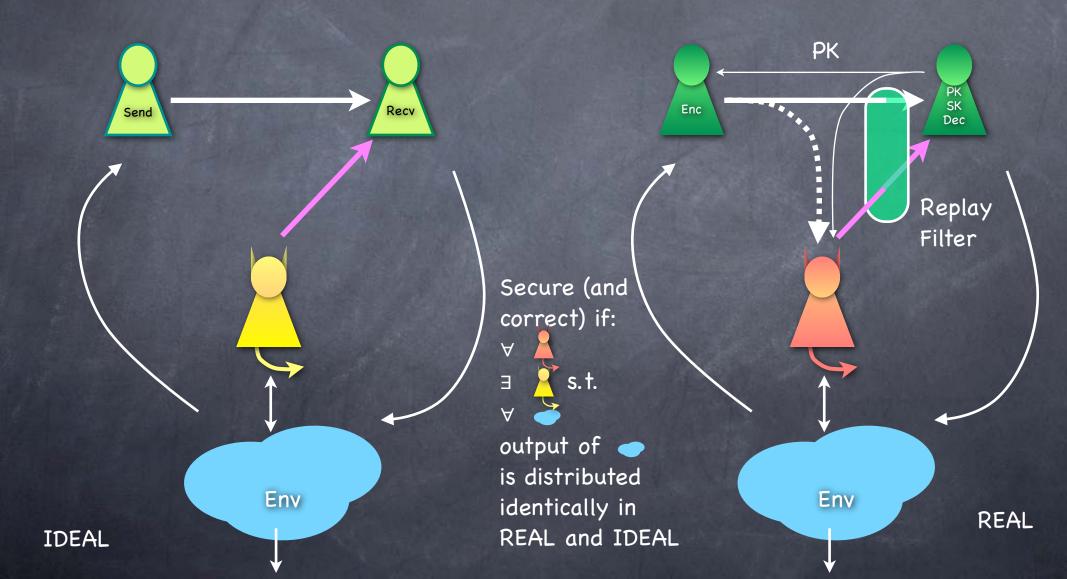
CCA Secure PKE

- In SKE, to get CCA security, we used a MAC
 - Bob would accept only messages from Alice
- But in PKE, Bob <u>wants to</u> receive messages from Eve as well!
 - But only if it is indeed Eve's "own message": she should "know" her own message!

Chosen Ciphertext Attack


Malleability

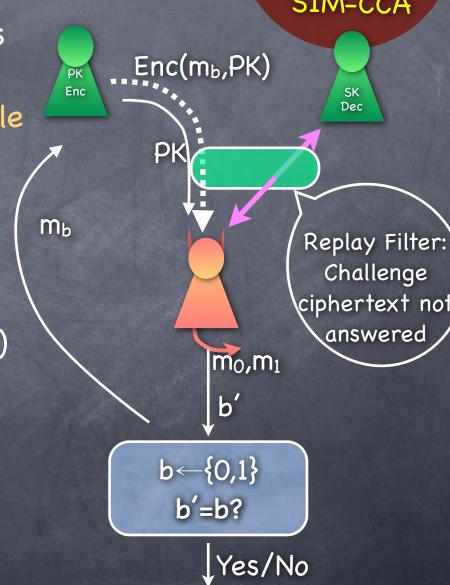
Malleability: Eve can "malleate" a ciphertext (without having to decrypt it) to produce a new ciphertext that would decrypt to a "related" message
More subtly, the 1 bit - valid or invalid -


may leak information on message or SK

- E.g.: Malleability of El Gamal
 - Recall: $Enc_{(G,g,Y)}(m) = (g^{\times},M.Y^{\times})$
 - Given (X,C) change it to (X,TC): will decrypt to TM
 - Or change (X,C) to (Xa,Ca): will decrypt to Ma
- If chosen-ciphertext attack possible
 - o i.e., Eve can get a ciphertext of her choice decrypted
 - Then Eve can exploit malleability to learn something "related to" Alice's messages

Chosen Ciphertext Attack

SIM-CCA Security (PKE)



IND-CCA (PKE versio

IND-CCA + correctness equivalent to SIM-CCA

Expt picks a random bit b. It also runs KeyGen to get a key (PK,SK). Adv gets PK and (guarded) access to Decsk oracle

- Adv sends two messages m₀, m₁ to Expt
- Expt returns Enc(m_b,K) to the adversary (and installs replay filter)
- Adversary returns a guess b'
- Experiment outputs 1 iff b'=b
- adversaries Pr[b'=b] 1/2 ≤ √(k)

CCA Secure PKE Schemes

- Several schemes in the heuristic "Random Oracle Model"
 - RSA-OAEP
 - Fujisaki-Okamoto
 - DHIES (doesn't need the full power of ROM)
- Cramer-Shoup Encryption: Provably secure CCA scheme, under DDH assumption

RSA function

- - N is the product of two large primes, say N=PQ
 - $gcd(e, \phi(N)) = 1$ where $\phi(N) = (P-1)(Q-1)$
 - The Ensures that $\exists d$ s.t. $ed = 1 \pmod{\phi(N)}$ and so $x^{ed} = x \pmod{N}$
 - Can easily compute d given φ(N) using Euclid's algorithm
 - frsa[N,d] is the inverse of frsa[N,e]
- Smallest (and a common) choice for e is 3 (taking P-1 and Q-1 to be not multiples of 3)
 - However d would be a large number that is (believed to be) hard to find without knowing P, Q
- RSA Assumption: f_{RSA[N,e]} is a OWF
 - Makes it a <u>Trapdoor</u> One-Way <u>Permutation</u> (trapdoor being d)

Random Oracle Model

- Random Oracle: a mythical oracle that, when initialized, picks a random function $R:\{0,1\}^* \rightarrow \{0,1\}^{n(k)}$ and when queried with x, returns R(x)
 - All parties have access to the same RO
- In ROM, evaluating some "hash function" H would be modeled as accessing an RO
 - Hope: the code for H has "no simple structure" and only way to get anything useful from it is to evaluate it on an input
- Sometimes security definitions need to be adapted for ROM
- Rigorous proofs of security, <u>after</u> moving to the ROM

Random Oracle Model

- There is no Pseudo-RO
 - Unlike PRF, RO must be locally evaluable for all parties. (think: giving out the seed of a PRF)
- There are schemes secure in ROM, such that for any instantiation of the RO, the scheme is insecure!
 - Also natural <u>constructs/primitives</u> which are realizable in ROM, but not in the standard model!
- What does a proof in ROM tell us?
 - Secure against attacks that treat H as a blackbox (and for which H is pseudorandom)

RSA-OAEP

RSA-OAEP

- "Text-book RSA encryption" (i.e., the Trapdoor OWP candidate f_{RSA}) applied to an "encoding" of the message
 - Encoding is randomised
 - Encoding uses a hash function modelled as a Random Oracle
 - © CCA security in the RO Model, assuming frea a OWP
- Part of RSA Cryptography Standard (PKCS#1, since Ver 2.0, in 1998). Commonly used in (earlier) SSL/TLS implementations

A Bit of RSA History

- In 1977 Rivest, Shamir, Adleman proposed using the RSA function directly as encryption ("text-book RSA encryption")
 - Being deterministic, it is not IND-CPA secure
- PKCS#1 V1.5 (1993) defined Enc(m;N,e) ← $f_{RSA[N,e]}$ (<header>||r||m), where r is a 0-terminated random byte sequence. Decryption returns error if $f_{RSA[N,d]}$ (ciphertext) doesn't have the right format
 - Considered to be CPA secure

by SSL

- But is malleable: For $c = f_{RSA[N,e]}(pad(m))$ and $c' = s^e \cdot c$; decryption of c' (if not error) gives $s \cdot (pad(m))$
 - Was considered only a theoretical concern in protocols like SSL,
 as it was not clear how a decryption oracle will be effected
- Bleichenbacher (1998) showed that d can be recovered from access (a few million times) to the decryption error oracle, which was exposed

As we'll see, long-term encryption keys prevent "forward secrecy" and are not recommended by protocols like TLS 1.3. But they are unavoidable in applications like encrypted e-mail (S/MIME, OpenPGP, etc.)

CCA Secure PKE Schemes

- Several schemes in the heuristic "Random Oracle Model"
 - RSA-OAEP
 - Fujisaki-Okamoto
 - DHIES (doesn't need the full power of ROM)

Hybrid Encryption schemes

Cramer-Shoup Encryption: Provably secure CCA scheme, under DDH assumption

Hybrid Encryption

- PKE is far less efficient compared to SKE (even with Random Oracle)
 - RSA-OAEP uses modular exponentiations, DDH based schemes uses exponentiations in a group, etc.
 - SKE and MAC (e.g., using Block Ciphers like AES) are very fast
- Hybrid encryption: Use (CCA secure) PKE to transfer a key for the (CCA secure) SKE. Use SKE with this key for sending data
 - Hopefully the combination remains (CCA) secure
 - Note: PKE used to encrypt only a (short) key for the SKE
 - Relatively low overhead on top of the (fast) SKE encryption

Hybrid Encryption

- Hybrid Encryption: KEM/DEM paradigm
 - Key Encapsulation Method: a public-key scheme to transfer a key
 - Data Encapsulation Method: a symmetric-key scheme (using the key transferred using KEM)
- For what KEM/DEM is a hybrid encryption scheme CCA secure?
 - Works if KEM is a SIM-CCA secure PKE scheme and DEM is a SIM-CCA secure SKE scheme
 - Easy to prove using "composition" properties of the SIM definition
 - Less security sufficient: KEM used to transfer a random key;
 DEM uses a new key every time.

Another CCA Secure PKE: DHIES

- Diffie-Hellman Integrated Encryption Scheme
 - Part of some standards
- Essentially a hybrid scheme
 - Data Encapsulation: CPA secure SKE, and MAC
 - We key Encapsulation: $X=g^x$. Let $K=Y^x$, where Y is the PK (as in El Gamal), and $(K_{SKE},K_{MAC}) = Hash(K)$ (where $K=Y^x=X^y$)
- CCA secure if Hash is modelled as a Random Oracle
 - Alternately, in the standard model, can be based on a complex (non-standard) assumption involving Hash and the group: "Oracle Diffie-Hellman Assumption"

Today

- CCA secure PKE
 - RSA-OAEP, Cramer-Shoup, DHIES, ...
- The Random Oracle model
- Hybrid Encryption: KEM/DEM
- Next up: Hash functions, Digital Signatures