Hash Functions in Action

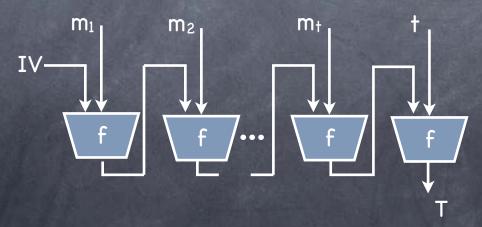
Lecture 11 Hashes and MAC

Hash Functions

- Main syntactic feature: Variable input length to fixed length output
- Primary requirement: collision-resistance
 - If for all PPT A, Pr[x≠y and h(x)=h(y)] is negligible in the following experiment:
 - \bullet A \rightarrow (x,y); h \leftarrow \mathcal{H} : Combinatorial Hash Functions
 - \bullet A \rightarrow x; h \leftarrow \mathcal{H} ; A(h) \rightarrow y : Universal One-Way Hash Functions
 - \bullet h \leftarrow #; A(h) \rightarrow (x,y) : Collision-Resistant Hash Functions
 - $h \leftarrow \mathcal{H}$; $A^h \rightarrow (x,y)$: Weak Collision-Resistant Hash Functions
- Also often required: "unpredictability"

Constructions

- CRHF: e.g., $h_{G,g^1,g^2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$ (in G, a prime order DL group)
- © CRHF in practice: e.g., SHA 256, SHA3
- SHA 256 (and many others) using a Merkle-Damgård iterated hash function, iterating a fixed input-length compression function



Today

- CRHF: Domain Extension
 - Merkle trees and Merkle-Damgård iterated hash function
- Combinatorial Hash: A weaker notion
 - Almost XOR Universal (AXU) hash function family

- Using hash functions for MAC
 - One-time MAC
 - Proper MACs (any number of times, variable length message)
 - With a PRF
 - GMAC (Also, recall CMAC, EMAC.)
 - Without a PRF
 - HMAC

Domain Extension

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - Note that CRHF which have a fixed domain
- First, simpler goal: extend to a larger, fixed domain
 - Assume we are given a hash function from two blocks to one block (a block being, say, k bits)
 - \bullet E.g., $h_{G,g^1,g^2}(x_1,x_2) = g_1^{x_1}g_2^{x_2}$

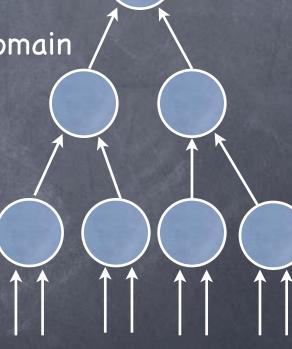
CRHF Domain Extension

Full-domain hash: hash arbitrarily long strings to a single hash value

First, simpler goal: extend to a larger, fixed domain

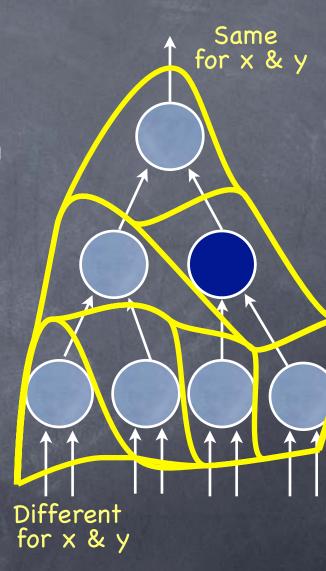
Merkle tree

- Uses a basic hash from {0,1}^{2k} to {0,1}^k
- Example: A hash function from {0,1}^{8k} to {0,1}^k using a tree of depth 3
- Any tree can be used, with consistent I/O sizes
- Same basic hash used at every node in the Merkle tree. Hash description same as for a single basic hash



Domain Extension for CRHF

- If a collision ($(x_1...x_n)$, $(y_1...y_n)$) over all, then some collision (x',y') for basic hash
 - Consider moving a "frontline" from bottom to top. Look for equality on this front.
 - Collision at some step (different values on ith front, same on i+1st); gives a collision for basic hash
- \bullet A*(h): run A(h) to get (x₁...x_n), (y₁...y_n). Move frontline to find (x',y')



Domain Extension for CRHF

- Full-domain hash: hash arbitrarily long strings to a single hash value
 - Merkle-Tree construction extends the domain to any fixed input length
- Hash the message length (number of blocks) along with the original hash
 - Collision in the new hash function gives either collision at the top level, or if not, collision in the original Merkle tree and for the same message length

|m|

CRHF in Practice

A single function, not a family (e.g. SHA-3, SHA-256, MD4, MD5)

Often based on a fixed input-length compression function

Merkle-Damgård iterated hash function, MDf:

Collision resistance even with variable input-length.

Note: Unlike CBC-MAC, here "length-extension" is OK, as long as it results in a different hash value

If f is not keyed, but "concretely" collision resistant, so is MD^f

If f is "concretely" collision resistant then so is MDf (for any IV)

XOR-Universal Hash

- Recall Combinatorial HF: A→(x,y); h←𝓜. h(x)=h(y) w.n.p
- 2-Universal hash function family
 - $\forall x \neq y, w, z Pr_{h \leftarrow \mathcal{U}} [h(x) = w, h(y) = z] = 1/|range|^2$
- XOR-Universal hash function family (range = {0,1}k, say)
 - ◊ $\forall x \neq y, z Pr_{h \leftarrow \#} [h(x) \oplus h(y) = z] = 1/|range| <math>\prec$ A 2UHF is an XUHF
- ε-Almost XOR-Universal hash function family

Converse not true [Exercise]

- AXUHF example: Variable length input, m = (m₁, ..., m_t), t k-bit blocks
 - $h_{\alpha}(m) = m_1 \alpha + m_2 \alpha^2 + ... + m_t \alpha^t + |m| \alpha^{t+1} < Over GF(2^k)$. Addition is XOR
 - m defines a polynomial P_m and $h_{\alpha}(m) = P_m(\alpha)$
 - Prh

 (m)⊕h(m') = z] = Prα

 (GF(2k)[Δ(α) = z] ≤ degree(Δ)/2k

 where Δ is a non-zero polynomial of degree ≤ max{|m|,|m'|}+1

Hashes for MAC

One-time MAC With 2-Universal Hash Functions

Trivial (very inefficient) solution (to sign a single n bit message):

Signature for m₁...m_n be (rⁱmi)_{i=1..n}

Negligible probability that Eve can produce a signature on m'≠m

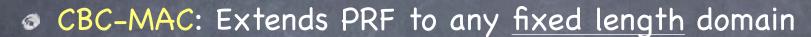
 r^3 0

- A much more efficient solution, using 2-UHF (and still no computational assumptions):
 - Onetime-MAC_h(M) = h(M), where h← \mathcal{H} , and \mathcal{H} is a 2-UHF
 - Seeing hash of one input gives no information on hash of another value

MAC: Beyond One-Time

With Combinatorial Hash Functions and PRF

- MACs can be based entirely on PRFs
 - PRF is a MAC (on one-block messages)



- Derive K as $F_{K'}(t)$, where t is the number of blocks
- Or, Use first block to specify number of blocks
- Or, output not the last tag T, but $F_{K'}(T)$, where K' is an independent key (EMAC)
- Or, XOR last message block with another key K' (CMAC)
- Using hash & PRF (for fixed length domains):

h(M) not revealed

MAC_{K,h}*(M) = PRF_K(h(M)) where h←½, and ½ is a 2-UHF

MAC: Beyond One-Time

With Combinatorial Hash Functions and PRF

- Using an ε-AXUHF & PRF (for variable length domains)
 - ⊗ MAC_{K,h}*(M) = (r, PRF_K(r)⊕h(M)) where h←£, £ ε-AXUHF, r random
 - Forgery with a fresh r prevented by PRF.
 - Forgery reusing an r requires knowing h(M)⊕h(M'), given no information about h (due to encryption with PRF)
- Note that GMAC is randomised as it needs a nonce r
 - But not a problem when used as part of Authenticated Encryption, which already needs a nonce
- Galois Counter Mode (GCM): Authenticated encryption using encrypt (AES in CTR mode) then MAC (GMAC).
 - Nonce r (with counter 0) used for GMAC, and PRF_K(r+i) with i> 0, for encryption. (Nonce itself is not MAC'ed.)

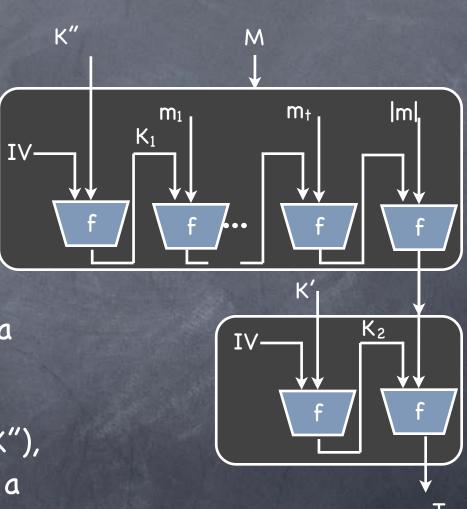
MAC: Beyond One-Time With Cryptographic Hash Functions

- Previous solutions required pseudorandomness
- What if we should base it only on fixed input-length MAC (not PRF)?
 - Why? "To avoid export restrictions!" (Was a consideration in the 1990's). Also security/efficiency
 - Candidate fixed input-length MACs in practice that do not use a block-cipher: compression functions (with key as IV)
- MAC*_{K,h}(M) = MAC_K(h(M)) where h←½, and ½ a weak-CRHF
 - Weak-CRHFs can be based on OWF (unlike CRHF). Efficient heuristic construction from compression functions (again)

h(M) may be revealed. Only oracle access to h

MAC: Beyond One-Time With Cryptographic Hash Functions

- HMAC: Hash-based MAC
- Essentially built from a compression function f
 - If keys K₁, K₂ independent (called NMAC), then secure MAC if: f is a fixed input-length MAC & the Merkle-Damgård iterated-hash is a weak-CRHF
 - In HMAC (K₁,K₂) derived from (K',K"), in turn heuristically derived from a single key K. If f is a (weak kind of) PRF K₁, K₂ can be considered independent



Hash Not a Random Oracle!

- But if H is a Merkle-Damgård iterated-hash function, then there is a simple length-extension attack for forgery
 - Take M' = M || pad_M || X, where pad_M is a block encoding |M| (used by the Merkle-Damgård iterated-hash) and X is arbitrary. Then, can compute H(K||M') from H(K||M).
 - (That attack can be fixed by preventing extension: prefix-free encoding)
 - Other suggestions like SHA1(M||K), SHA1(K||M||K) all turned out to be flawed too

Today

- CRHF domain extension using Merkle trees
- Merkle-Damgård iterated hash function for full-domain hash
- ε-AXUHF as a full-domain combinatorial hash function
- Hash functions for MACs
 - Using a PRF: encipher 2UHF, or encrypt AXUHF
 - Using AXUHF GHASH: GMAC and GCM
 - Hash-then-MAC
 - Using weak CRHF and fixed input-length MAC
 - Underlying HMAC/NMAC: compression function assumed to (1) be a fixed input-length MAC, and (2) when used in a keyed iterated-hash function, yield a weak CRHF.
- Next: Digital Signatures