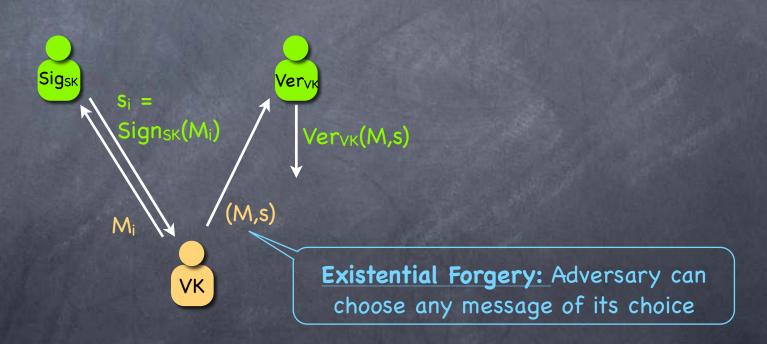
Digital Signatures

Lecture 12

Digital Signatures

Syntax: KeyGen, Sign_{SK} and Verify_{VK}.
Security: Same experiment as MAC's, but adversary given VK



Advantage = $Pr[Ver_{VK}(M,s)=1 \text{ and } (M,s) \notin \{(M_i,s_i)\}]$ Weaker variant: Advantage = $Pr[Ver_{VK}(M,s)=1 \text{ and } M \notin \{M_i\}]$

Digital Signatures

- Online verification of real life identity is difficult
- But the verification key for a digital signature can serve as your digital identity
 - OK to own multiple digital identities
 - Compromised if you lose your signing key
- © Central to identity on the internet (with the help of certificate authorities), crypto currencies, etc.

One-time Digital Signatures

Recall One-time MAC to sign a single n bit message

Lamport's One-Time Signature

- Shared secret key: 2n random strings (each k-bit long) (rio,ri1)i=1..n
- Signature for m₁...m_n be (rⁱmi)_{i=1..n}
- One-Time Digital Signature: Same signing key and signature, but VK= $(f(r_0), f(r_1))_{i=1..n}$ where f is a OWF
 - Varification applies f to signature elements and

•	vermeand	in applies	1 10	signarare	elements	unu
	compares	with VK				

f(r1 ₀)	f(r ² ₀)	f(r ³ 0)
f(r11)	f(r21)	f(r31)

r¹o	r ² 0	r ³ 0
r^{l_1}	r ² 1	r³1

Security [Exercise]

Signatures from OWF

- Lamport's scheme based on OWF
 - One-time and has a fixed-length message
- One-time, fixed-length message signatures (Lamport)
 Domain-Extension → arbitrary length messages (using UOWHF)
 "Certificate Tree" → many-time signatures (using PRF)
- So, in principle, full-fledged digital signatures can be entirely based on OWF
- Coming up:
 - Hash-and-Sign domain extension for signatures
 - Domain extension using CRHF (UOWHF suffices, but less efficient)
 - "Certificate tree"

Domain Extension of Signatures using Hash

- Domain extension using a CRHF (not weak CRHF, unlike for MAC)
 - Sign*_{SK,h}(M) = Sign_{SK}(h(M)) where h←# included in both SK*,VK*
 - Security: Forgery gives either a hash collision or a forgery for the original (finite domain) signature
 - Formal reduction: Given adversary A for Sign*, define
 - Event₁: A outputs (M,σ) s.t. $h(M)=h(M_i)$, $M_i\neq M$, where A had asked for signature on M_i .
 - Event₂: As forgery not on such an M.
 - Advantage ≤ $Pr[Event_1 \text{ or } Event_2] ≤ Pr[Event_1] + Pr[Event_2]$
 - © <u>CRHF adversary:</u> given h, sample (SK,VK), let VK*=(VK,h), and run A; answer signing queries of A using (SK,h). If A outputs (M, σ) s.t. $\exists i \ h(M)=h(M_i), M_i\neq M$, then output (M,M_i). Advantage = Pr[Event₁]
 - Signature adversary: given VK, pick h, let VK*=(VK,h), and run A; answer signing queries of A using h and Sign oracle. If A outputs forgery (M,σ) , output $(h(M),\sigma)$. Advantage = $Pr[Event_2]$

One-Time -> Many-Times

- Certificate chain: $VK_1 \rightarrow (VK_2, \sigma_2) \rightarrow ... \rightarrow (VK_t, \sigma_t) \rightarrow (m,\sigma)$ where σ_i is a signature on VK_i that verifies w.r.t. VK_{i-1} , and σ is a signature on m w.r.t. VK_t
 - Suppose a "trustworthy" signer only signs the verification key of another "trustworthy" signer. Then, if VK₁ is known to be issued by a trustworthy signer, and all links verified, then the message is signed by a trustworthy signer.
- Certificate tree for one-time → many-times signatures
 - Idea: Each message is signed using a unique VK for that message
 - Verifier can't hold all VKs: A binary tree of VKs, with each leaf designated for a message. Parent VK signs its pair of children VKs (one-time, fixed-length sign). Verifier remembers only root VK. Signer provides a certificate chain to the leaf VK used.
 - Signer can't remember all SKs: Uses a PRF to define the tree (i.e., SK for each node), and remembers only the PRF seed

Signatures from OWF Summary

- One-time, fixed-length message signatures (Lamport)

 Domain-Extension
 → arbitrary length messages (using UOWHF)

 "Certificate Tree"
 → many-time signatures, fixed length (using PRF)

 Domain-Extension
 → arbitrary length messages
- UOWHF and PRF can be based on OWF, and so, in principle, full-fledged digital signatures can be entirely based on OWF
- Not very efficient: Say hashes are O(k) bits long. Then, a signature contains O(k) VKs of Lamport signature, each of which, to allow signing O(k) bit messages, is $O(k^2)$ bits long. Overall $O(k^3)$ bits long.
- Coming up: More efficient schemes

Hash and Invert

- Diffie-Hellman suggestion (heuristic): Sign(M) = $f^{-1}(M)$ where (SK,VK) = (f^{-1},f) , a Trapdoor OWP pair. Verify(M, σ) = 1 iff $f(\sigma)$ =M.
 - Attack: pick σ , let M=f(σ) (Existential forgery)
- Fix, using a "hash": Sign(M) = f-1(Hash(M))
 - Secure in the random oracle model
 - Hash can handle variable length inputs
 - RSA-PSS in RSA Standard PKCS#1 is based on this

Proving Security in the RO Model

- To prove: If Trapdoor OWP secure, then Sign(M) = f-1(Hash(M)) is a secure digital signature, when Hash is modelled as a random oracle
 - ⊕ Hope: Since adversary can't invert Hash, needs to compute f-1
 - Problem: Signing oracle gives adversary access to the f-1 oracle. But then, trapdoor OWP gives no guarantees!
 - But adversary only sees $(x,f^{-1}(x))$ where x = Hash(M) is random. This can be arranged by picking $f^{-1}(x)$ first and fixing Hash(M) afterwards!
- Modeling as an RO: RO randomly initialized to a random function H from {0,1}* to {0,1}k
 - Signer and verifier (and forger) get oracle access to H(.)
 - All probabilities also over the initialization of the RO

Proving Security in ROM

Reduction: If A forges signature (where Sign(M) = $f^{-1}(H(M))$ with (f,f^{-1}) from Trapdoor OWP and H an RO), then A* that can break Trapdoor OWP (i.e., given just f, and a random challenge z, can find $f^{-1}(z)$ w.n.n.p). A*(f,z) runs A internally.

♠ A expects f, access to the RO and a signing oracle f-¹(Hash(.))

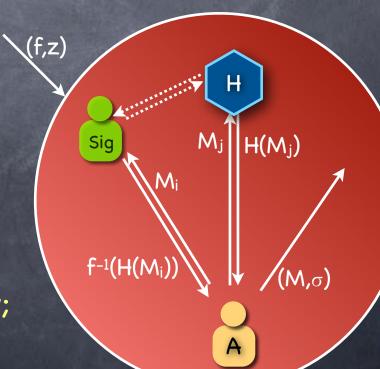
and outputs (M,σ) as forgery

A* can implement RO: a random response to each new query!

A* gets f, but doesn't have f-1 to sign

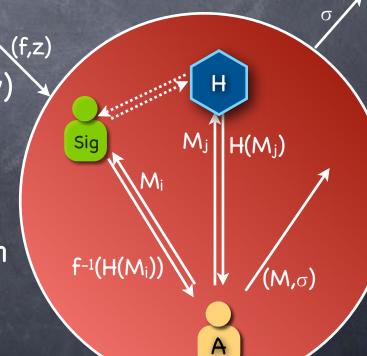
But x = H(M) is a random value that A^* can pick!

A* picks H(M) as x=f(y) for random y; then $Sign(M) = f^{-1}(x) = y$



Proving Security in ROM

- A* s.t. if A forges signature, then A* can break Trapdoor OWP
 - A* implements H and Sign: For each new M queried to H (including by Sign), A* sets H(M)=f(y) for random y; Sign(M) = y
 - But A* should force A to invert z
 - Easy if forgery on a fresh M (set H(M)=z at the end). But needn't be so.
 - For a random (new) query M (say tth) A* sets H(M)=z
 - Here queries include the "last query" to H, i.e., the one for verifying the forgery (which may or may not be a new query)
 - Given a bound q on the number of queries that A makes to Sign or H, with probability ≥ 1/q, A* would have set H(M)=z, where M is the message in the forgery
 - In that case forgery $\Rightarrow \sigma = f^{-1}(z)$



Summary

- Digital signatures can be based on OWF + UWOHF + PRF
 - In turn based on OWF (or more efficiently on OWP)
- More efficiently, can be based on number-theoretic/algebraic assumptions (e.g., Cramer-Shoup signatures based on Strong RSA and CRHF)
- In practice, based on number-theoretic/algebraic assumptions in the random oracle model
 - RSA-PSS, of the form f-1 (Hash(M)), where f a Trapdoor OWP
 - DSA and variants, based on Schnorr signature (next time)
- Next up: Zero-Knowledge proofs