
Zero Knowledge Proofs
Lecture 13
A Detour

Digital Signatures from Proof Systems
Digital signatures can be seen as a proof of possession of a secret (signing) key, where

the proof is tied with a message in a non-malleable fashion

Unforgeability: Seeing a proof tied to one message shouldn’t leak the key, or enable

one to give a proof of possessing it tied to another message

It turns out that “proof systems” can indeed be turned into signature schemes

In the random oracle model, these form the basis of some of the most standard

signature systems (DSA/ECDSA, EdDSA)

Today

Interactive proof systems

Eventually, to be useful as a digital signature, we will need a non-interactive proof.

Zero-Knowledge proof systems

Helps in ensuring that the signatures don’t leak the signing key

x * L

Interactive Proofs

Prover wants to convince
verifier that x has some
property

i.e. x belongs to some set L
(<language= L)

Computationally bounded
verifier, but all powerful
prover (for now)

Prove to me!

OK

Interactive Proofs
Completeness

If x in L, honest Prover will
convince honest Verifier

Soundness

If x not in L, honest Verifier
won9t accept any purported
proof x * L

yeah right! Reject!

An Example
Coke in bottle or can

Prover claims: coke in bottle
and coke in can are different

IP protocol:

prover tells whether cup was
filled from can or bottle

repeat till verifier is
convinced

can/bottle

Pour into
from can or
bottle

An Example
Graph Non-Isomorphism

Prover claims: G0 not isomorphic
to G1

IP protocol:

prover tells whether G* is an
isomorphism of G0 or G1

repeat till verifier is
convinced

G0/G1

G*
Set G* to be
Ã(G0) or Ã(G1)
(Ã random)

Isomorphism: Same graph can be represented
as a matrix in different ways:

e.g.

both are isomorphic to the graph

represented by the drawing

G0 =

0 1 0 1

1 0 0 1

0 0 0 1

1 1 1 0

 and G1 =

0 1 0 1

1 0 1 1

0 1 0 0

1 1 0 0

Prove to me!x * L

Proofs for NP languages
Proving membership in an NP
language L

x * L iff #w R(x,w)=1(for R in P)

e.g. Graph Isomorphism

IP protocol:

prover just sends w

But what if prover doesn9t
want to reveal w?

w

R(x,w)=1?

 OK
w

NP is the class of languages
which have non-interactive and

deterministic proof-systems

A,B,C are encryptions
of a, b, c s.t. a=b+c

Prove to me!

Zero-Knowledge Proofs
In cryptographic settings, often need
to be able to verify various claims

e.g., 3 encryptions A,B,C are of
values a,b,c s.t. a=b+c

Option 1: reveal a,b,c and how
they get encrypted into A,B,C

Prove without revealing
anything at all about a,b,c
except that a=b+c ?

 wonder
what c is...

x * L Prove to me!

Zero-Knowledge Proofs

Verifier should not gain any
knowledge from the honest
prover

except whether x is in L

How to formalize this?

Simulation! wonder
what f(w) is...

w

G* := Ã(G1)
(random Ã)

An Example

Graph Isomorphism

(G0,G1) in L iff there exists an
isomorphism Ã such that
Ã(G0)=G1

IP protocol: send Ã

ZK protocol?

G*

random bit
 b

b

if b=1, Ã* := Ã
if b=0, Ã* := ÃoÃ

G*=Ã*(Gb)?

Ã*

G* := Ã(G1)
(random Ã)

An Example
Why is this convincing?
If prover can answer both b9s for the
same G* then G0~G1

Otherwise, testing on a random b will
leave prover stuck w.p. 1/2

Why ZK?
Verifier9s view: random b and Ã* s.t.
G*=Ã*(Gb)

Which he could have generated by
himself (whether G0~G1 or not)

G*

random bit
 b

b

if b=1, Ã* := Ã
if b=0, Ã* := ÃoÃ

G*=Ã*(Gb)?

Ã*

Ah, got it!

42

Zero-Knowledge Proofs
Interactive Proof: Complete and Sound

And has ZK Property:

Verifier9s view could have been
<simulated=

For every adversarial strategy,
 there is a simulation strategy

Even though the view gives Bob
no additional knowledge, it
convinces him of the claim!

x in L

Ah, got it!

42

Bob: William Tell is a great marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple

placed on his son’s head! See this!

Charlie: That apple convinced you?

Anyone could have made it up!

Bob: But I saw him shoot it...

The Legend of William Tell
A Side Story

Bob: G0 and G1 are isomorphic!

Charlie: How do you know?

Bob: Alice just proved it to me! See
this:

 G*, b, Ã* s.t. G*=Ã*(Gb)

Charlie: That convinced you? Anyone
could have made it up!

Bob: But I picked b at random and
she had no trouble answering me...

Bob: William Tell is a great marksman!

Charlie: How do you know?

Bob: I just saw him shoot an apple

placed on his son’s head! See this!

Charlie: That apple convinced you?

Anyone could have made it up!

Bob: But I saw him shoot it...

The Legend of William Tell
A Side Story

Simulation
Another Analogy

Shooting arrows at targets
drawn randomly on a wall
 vs.

Drawing targets around arrows
shot randomly on to the wall

Both produce identical views,
but one of them is convincing of
marksmanship

by CHARLIE HANKIN New Yorker Cartoons

https://condenaststore.com/art/charlie+hankin?searchType=artistname
https://condenaststore.com/collections/new+yorker+cartoons

Commitment
 Commitment is a useful tool in many ZK proofs

Committing to a value: Alice puts the message in a box, locks it, and
sends the locked box to Bob, who learns nothing about the message

Revealing a value: Alice sends the key to Bob. At this point she can9t
influence the message that Bob will get on opening the box.

Implementation in the Random Oracle Model: Commit(x) = H(x,r) where r is
a long enough random string, and H is a random hash function (available
as an oracle) with a long enough output. To reveal, send (x,r).

¦ Recall: ROM is a heuristic model: Can do provably impossible tasks
in this model! Commitment protocols exist in the standard model too.

A ZK Proof for Graph Colourability
To prove that nodes of a graph can be coloured with at most 3
colours, so that adjacent nodes have different colours

Uses a commitment protocol as a subroutine

At least 1/#edges probability of catching a
wrong proof

Repeat many times with independent
colour permutations

Graph 3-colourability is an
NP-complete problem

A ZK proof system for any
NP language L:
 x * L iff Gx * 3COL
So prove Gx * 3COL instead

pick random
edge

distinct colours?Use
ran

dom

col
our

s

edge

G,colourin
g

OK

reveal

commit

