
Zero Knowledge Proofs (ctd.)
Lecture 14

Schnorr Signatures

Digital Signatures from Proof Systems
Digital signatures can be seen as a proof of possession of a secret (signing)
key, where the proof is tied with a message in a non-malleable fashion

Unforgeability: Seeing a proof tied to one message shouldn’t leak the
key, or enable one to give a proof of possessing it tied to another
message

It turns out that “proof systems” can indeed be turned into signature
schemes

In the random oracle model, these form the basis of some of the most
standard signature systems (DSA/ECDSA, EdDSA)

Last time

Interactive proof systems

Eventually, to be useful as a digital signature, we will need a non-
interactive proof.

Zero-Knowledge proof systems

When used for signatures, ZK ensures the signing key not leaked

ZK Proof for NP Languages
Consider an NP language L specified by a poly-time computable
predicate R: i.e., x*L iff #w s.t. R(x,w)=1. A ZK proof protocol P÷V for L
has the following properties

Completeness: if #w R(x,w)=1, then Pr[P(x,w)÷V(x) = 1] = 1

Soundness: if $w R(x,w)=1, then Pr[P*(x)÷V(x) = 1] = negl
(for any P*)

A stronger notion: Proof of Knowledge

Zero-Knowledge: if #w R(x,w)=1, then view of the verifier in
P(x,w)÷V(x) can be (indistinguishably) simulated from x

This is called Honest Verifier ZK (HVZK)

Stronger property: For any PPT V*, there is a simulator S s.t.,
ViewV*(P(x,w)÷V*(x)) j S(x)

V learns nothing
beyond the fact that
x has the property

ZK argument: soundness required
only against PPT P*

RE
CA

LL

ZK Property

proto proto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

Secure (and
correct) if:

" PPT

PPT s.t.

" PPT

output of
in REAL and
IDEAL are
almost identical

x

Statistical
ZK: Allow
unbounded
environment

—

Classical definition uses simulation only when receiver is corrupt;

Also uses only standalone security: Environment gets only a transcript at the end

Honest-Verifier ZK (HVZK)
Passive corruption

Proof of Knowledge
In a Proof of Knowledge, an adversary that gives valid proofs (with
significant probability), “can give” a witness (i.e., can be extracted from it)

A ZK Argument of Knowledge of discrete log of Y=gy

(in a prime-order group G; say |G|=N)

P³V: R := gr for a random r modulo N
V³P: x random modulo N
P³V: s := xy + r modulo N
V checks: gs = Yx R

Knowledge-Soundness:

Firstly, gs = Yx R ⇒ s = xy+r, where R = gr

If after sending R, P could respond to two different challenges x1
and x2 as s1 = x1y + r and s2 = x2y + r, then can solve for y (in a
prime-order group)

ZK: simulation picks s, x first and sets R = gs/Yx

The term “Proof” is used to
indicate that the corrupt prover

could be computationally
unbounded.

Not the case here.

Knowledge Soundness

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor

• With all entities PPT, corresponds to Argument of Soundness

x

Secure (and
correct) if:

" PPT

PPT s.t.

" PPT

output of
in REAL and
IDEAL are
almost identical

Proof of Knowledge:
unbounded prover &

simulator, but
require sim to run
in comparable time

—
—

HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier

e.g. in PoK of discrete log, simulator picks (x,s) first and
computes R (without knowing r). Relies on verifier to pick x
independent of R.

Special soundness: If given (R,x,s) and (R,x’,s’) s.t. xbx’ and both
accepted by verifier, then can derive a valid witness

e.g. solve y from s=xy+r and s’=x’y+r (given x,s,x’,s’)

Implies knowledge-soundness: for each R s.t. prover has
significant probability of being able to convince, can extract y
from the prover with comparable probability (using
“rewinding”, in a stand-alone setting)

Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)) (in a prime-
order group). i.e., Y = gy and Z = hy [Chaum-Pederson]

Can be used to prove equality of two El Gamal encryptions (A,B) &
(A’,B’) w.r.t public-key (g,Y): set (h,Z) := (A/A’,B/B’)

P³V: (R,W) := (gr, hr)
V³P: x
P³V: s := xy + r (modulo order of the group)
V checks: gs = Yx R and hs = Zx W

Special Soundness:

gs = YxR and hs = ZxW ⇒ s = xy+r = xy’+r’
where R=gr, Y=gy and W=hr’, Z=hy’

If two accepting transcripts (R,W,x1,s1) and (R,W,x2,s2) (x1bx2), then
s1 = x1y + r = x1y’+ r’ and s2 = x2y + r = x2y’+ r’. Then can find
y = y’= (s1-s2)/(x1-x2).

HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

Two parallel executions of the previous proof,
with same x and s (forcing same r, y)

Fiat-Shamir Heuristic

Limitation of HVZK proofs: Do not guarantee ZK when verifier is
actively corrupt

If verifier is a public-coin program (as in Chaum-Pederson)
— i.e., simply picks random values and sends them — then,
need only to generate trustworthy random coins

Fiat-Shamir Heuristic: random coins from verifier defined as
H(trans), where H is a random oracle and trans is the transcript
of the proof so far (including the statement)

Also, importantly, removes need for interaction in the proof

Note: In the standard setting, ZK proofs need to be
interactive; else a corrupt prover can give simulated proofs!

Example: Fiat-Shamir Heuristic applied to the ZK Proof of
knowledge of discrete log of Y=gy

P³V: R := gr
V³P: x
P³V: s := xy + r
V checks: gs = Yx R

Essentially, the prover gives the proof “to the random oracle” and
then reports the transcript to the verifier (who also checks x)

To get an acceptable transcript, the prover must be able to
convince the random oracle at least once

But if the proof system has negligible soundness error, can’t do it
in polynomial number of attempts, unless the statement is correct

Further, special soundness still yields knowledge soundness (via an
argument called “Forking Lemma”)

P³V: R := gr
 x := H(g,Y,R)
 s := xy + r
V checks: gs = YH(g,Y,R) R

Fiat-Shamir Heuristic

Fiat-Shamir Heuristic

Zero-Knowledge property still holds (assuming an honest prover
is unlikely to use the same partial transcript in independent
proofs)

Intuitively, if the partial transcript is fresh, its hash is indeed a
uniformly random string, just like an honest verifier would have
sent

Formally, a simulator which programmes the hash function

First generate a simulated transcript, say (R,x,s) and then
program the random oracle so that H(stmt||R) = x

Note: stmt||R assumed to be fresh. But the original proof
system will anyway need this to avoid the verifier being
able to run a knowledge extractor.

Fiat-Shamir heuristic

(hash m too)

Schnorr Signature
From a ZK Argument of knowledge of
discrete log of Y=gy

(in a prime-order group)

P³V: R := gr
V³P: x
P³V: s := xy + r
V checks: gs = Yx R

Hashed “transcript” includes the message as well now

By ZK of the proof system, can simulate a signing oracle (without knowing
signing key)

First simulate a transcript (R,x,s) (Recall: pick x, s first, then set
R=gs/Yx). Then program H(m||VK||R) = x

By special soundness (and forking lemma) a non-negligible advantage,
using polynomial queries to the RO, can be converted into similar
advantage for solving DL

Schnorr signature
(SK,VK) = (y,(g,Y)) where Y=gy
Signature = (R,s) where

Verification: gs = YH(m||VK||R) R

Pick R := gr
Let x = H(m||VK||R)
Let s := xy + r

Schnorr Signature
Schnorr signature

(SK,VK) = (y,(g,Y)) where Y=gy
Signature = (R,s) where

Verification: gs = YH(m||VK||R) R

Pick R := gr
Let x = H(m||VK||R)
Let s := xy + r

EdDSA is based on Schnorr Signature

Uses a particular group based
on “Edwards curves”

Instead of a random nonce r, sets
it to be a hash of message and
(part of) private key

The nonce should be unpredictable (not queried to
the random oracle previously by the adversary),
for the ZK simulation

There is a (somewhat) similar signature scheme called El Gamal
Signature

Standards DSA and ECDSA are based on it

Fairly efficient ZK proofs systems exist for all NP properties

Even more efficient HVZK proof systems for specialised problems
like equality of discrete logs

Fiat-Shamir heuristics can convert such protocols into non-

interactive proofs secure against actively corrupt verifiers too
(but in the Random Oracle model)

Security of EdDSA (Schnorr signature) is directly based on this.
DSA/ECDSA are similar schemes

Summary

These, as well as RSA
signatures, all rely on the

Random Oracle Model

