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Schnorr Signatures



Digital Signatures from Proof Systems
Digital signatures can be seen as a proof of possession of a secret (signing) 
key, where the proof is tied with a message in a non-malleable fashion

Unforgeability: Seeing a proof tied to one message shouldn’t leak the 
key, or enable one to give a proof of possessing it tied to another 
message

It turns out that “proof systems” can indeed be turned into signature 
schemes

In the random oracle model, these form the basis of some of the most 
standard signature systems (DSA/ECDSA, EdDSA)

Last time

Interactive proof systems

Eventually, to be useful as a digital signature, we will need a non-
interactive proof.

Zero-Knowledge proof systems

When used for signatures, ZK ensures the signing key not leaked



ZK Proof for NP Languages
Consider an NP language L specified by a poly-time computable 
predicate R: i.e., x*L iff #w s.t. R(x,w)=1. A ZK proof protocol P÷V for L 
has the following properties


Completeness: if #w R(x,w)=1, then Pr[P(x,w)÷V(x) = 1] = 1


Soundness: if $w R(x,w)=1, then Pr[P*(x)÷V(x) = 1] = negl  
(for any P*)


A stronger notion: Proof of Knowledge


Zero-Knowledge: if #w R(x,w)=1, then view of the verifier in 
P(x,w)÷V(x) can be (indistinguishably) simulated from x


This is called Honest Verifier ZK (HVZK)


Stronger property: For any PPT V*, there is a simulator S s.t., 
ViewV*(P(x,w)÷V*(x)) j S(x)

V learns nothing 
beyond the fact that 
x has the property

ZK argument: soundness required 
only against PPT P*
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ZK Property

proto proto
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Secure (and 
correct) if: 


" PPT    


# PPT     s.t.


" PPT 

output of        
in REAL and 
IDEAL are 
almost identical

x

Statistical 
ZK: Allow 
unbounded  
environment

—

Classical definition uses simulation only when receiver is corrupt;

Also uses only standalone security: Environment gets only a transcript at the end

Honest-Verifier ZK (HVZK) 
Passive corruption



Proof of Knowledge
In a Proof of Knowledge, an adversary that gives valid proofs (with 
significant probability), “can give” a witness (i.e., can be extracted from it)

A ZK Argument of Knowledge of discrete log of Y=gy  

(in a prime-order group G; say |G|=N)

P³V:  R := gr       for a random r modulo N 
V³P:  x             random modulo N 
P³V:  s := xy + r  modulo N 
V checks: gs  = Yx R 

Knowledge-Soundness: 

Firstly, gs = Yx R  ⇒  s = xy+r, where R = gr

If after sending R, P could respond to two different challenges x1 
and x2 as s1 = x1y + r and s2 = x2y + r, then can solve for y (in a 
prime-order group)

ZK: simulation picks s, x first and sets R = gs/Yx

The term “Proof” is used to 
indicate that the corrupt prover 

could be computationally 
unbounded.  

 
Not the case here.



Knowledge Soundness

protoproto

Env
REAL

i’face

Env

IDEAL

FR

x,w x

• Require simulation also when prover is corrupt

• Then simulator is a witness extractor

• With all entities PPT, corresponds to Argument of Soundness

x

Secure (and 
correct) if: 


" PPT    


# PPT     s.t.


" PPT 

output of        
in REAL and 
IDEAL are 
almost identical

Proof of Knowledge: 
unbounded prover & 

simulator, but 
require sim to run 
in comparable time

—
—



HVZK and Special Soundness
HVZK: Simulation for honest (passively corrupt) verifier


e.g. in PoK of discrete log, simulator picks (x,s) first and 
computes R (without knowing r). Relies on verifier to pick x 
independent of R.


Special soundness: If given (R,x,s) and (R,x’,s’) s.t. xbx’ and both 
accepted by verifier, then can derive a valid witness


e.g. solve y from s=xy+r and s’=x’y+r (given x,s,x’,s’)


Implies knowledge-soundness: for each R s.t. prover has 
significant probability of being able to convince, can extract y 
from the prover with comparable probability (using 
“rewinding”, in a stand-alone setting)



Honest-Verifier ZK Proofs
ZK PoK to prove equality of discrete logs for ((g,Y),(h,Z)) (in a prime-
order group). i.e., Y = gy and Z = hy [Chaum-Pederson]


Can be used to prove equality of two El Gamal encryptions (A,B) & 
(A’,B’) w.r.t public-key (g,Y): set (h,Z) := (A/A’,B/B’)


P³V:  (R,W) := (gr, hr)  
V³P:  x  
P³V:  s := xy + r  (modulo order of the group) 
V checks: gs  = Yx R and hs  = Zx W

Special Soundness:

gs = YxR and hs = ZxW  ⇒  s = xy+r = xy’+r’   
where R=gr, Y=gy and W=hr’, Z=hy’


If two accepting transcripts (R,W,x1,s1) and (R,W,x2,s2) (x1bx2), then  
s1 = x1y + r = x1y’+ r’ and s2 =  x2y + r = x2y’+ r’. Then can find  
y = y’= (s1-s2)/(x1-x2).


HVZK: simulation picks x, s first and sets R=gs/Yx, W=hs/Zx

Two parallel executions of the previous proof, 
with same x and s (forcing same r, y)



Fiat-Shamir Heuristic

Limitation of HVZK proofs: Do not guarantee ZK when verifier is 
actively corrupt


If verifier is a public-coin program (as in Chaum-Pederson) 
— i.e., simply picks random values and sends them — then, 
need only to generate trustworthy random coins


Fiat-Shamir Heuristic: random coins from verifier defined as 
H(trans), where H is a random oracle and trans is the transcript 
of the proof so far (including the statement)


Also, importantly, removes need for interaction in the proof


Note: In the standard setting, ZK proofs need to be 
interactive; else a corrupt prover can give simulated proofs!



Example: Fiat-Shamir Heuristic applied to the ZK Proof of 
knowledge of discrete log of Y=gy 


P³V:  R := gr  
V³P:  x  
P³V:  s := xy + r  
V checks: gs  = Yx R 


Essentially, the prover gives the proof “to the random oracle” and 
then reports the transcript to the verifier (who also checks x)


To get an acceptable transcript, the prover must be able to 
convince the random oracle at least once


But if the proof system has negligible soundness error, can’t do it 
in polynomial number of attempts, unless the statement is correct


Further, special soundness still yields knowledge soundness (via an 
argument called “Forking Lemma”)

P³V:  R := gr  
         x := H(g,Y,R) 
         s := xy + r  
V checks: gs  = YH(g,Y,R) R 

Fiat-Shamir Heuristic



Fiat-Shamir Heuristic

Zero-Knowledge property still holds (assuming an honest prover 
is unlikely to use the same partial transcript in independent 
proofs)


Intuitively, if the partial transcript is fresh, its hash is indeed a 
uniformly random string, just like an honest verifier would have 
sent


Formally, a simulator which programmes the hash function


First generate a simulated transcript, say (R,x,s) and then 
program the random oracle so that H(stmt||R) = x


Note: stmt||R assumed to be fresh. But the original proof 
system will anyway need this to avoid the verifier being 
able to run a knowledge extractor.



Fiat-Shamir heuristic

(hash m too)

Schnorr Signature
From a ZK Argument of knowledge of  
discrete log of Y=gy   

(in a prime-order group)

P³V:  R := gr  
V³P:  x  
P³V:  s := xy + r 
V checks: gs  = Yx R 

Hashed “transcript” includes the message as well now

By ZK of the proof system, can simulate a signing oracle (without knowing 
signing key)

First simulate a transcript (R,x,s) (Recall: pick x, s first, then set 
R=gs/Yx). Then program H(m||VK||R) = x

By special soundness (and forking lemma) a non-negligible advantage, 
using polynomial queries to the RO, can be converted into similar 
advantage for solving DL

Schnorr signature
(SK,VK) = (y,(g,Y)) where Y=gy 
Signature = (R,s) where 
 
 
 
Verification: gs  = YH(m||VK||R) R 

Pick R := gr  
Let x = H(m||VK||R)  
Let s := xy + r



Schnorr Signature
Schnorr signature

(SK,VK) = (y,(g,Y)) where Y=gy 
Signature = (R,s) where 
 
 
 
Verification: gs  = YH(m||VK||R) R 

Pick R := gr  
Let x = H(m||VK||R)  
Let s := xy + r

EdDSA is based on Schnorr Signature

Uses a particular group based 
on “Edwards curves”

Instead of a random nonce r, sets 
it to be a hash of message and  
(part of) private key

The nonce should be unpredictable (not queried to  
the random oracle previously by the adversary),  
for the ZK simulation

There is a (somewhat) similar signature scheme called El Gamal 
Signature

Standards DSA and ECDSA are based on it



Fairly efficient ZK proofs systems exist for all NP properties


Even more efficient HVZK proof systems for specialised problems 
like equality of discrete logs


Fiat-Shamir heuristics can convert such protocols into non-

interactive proofs secure against actively corrupt verifiers too 
(but in the Random Oracle model)


Security of EdDSA (Schnorr signature) is directly based on this. 
DSA/ECDSA are similar schemes

Summary

These, as well as RSA 
signatures, all rely on the 

Random Oracle Model


