Communication Protocols

Lecture 16

TLS

We saw...

@ Symmetric-Key Components
@ SKE, MAC

@ Public-Key Components
@ PKE, Digital Signatures

@ Building blocks: Block-ciphers (AES), Hash-functions (SHA-3),
Trapdoor PRG/OWP for PKE (e.qg., DDH, RSA) and
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)

@ Symmetric-Key primitives much faster than Public-Key ones

@ Hybrid Encryption gets best of both worlds

Secure Communication in
Practice

@ Can do at different levels of the “network stack”

@ e.q., application layer”, “transportation layer” or “network
layer”

@ Protocol standards in all cases
@ To be interoperable
@ To not insert bugs by doing crypto engineering oneself
® e.g.: SSL/TLS (used in https), IPSec (in the "network layer®)

@ Allows implementation in libraries or within OS kernels

Security Architectures
(An example)

Security architecture (client perspective)

Semice Provde

Appication Applcation Application Application Application

Web Services Sdcurity
SOAP sonp SOAP

HTTP M_?.I HTTP Autherpication

HTTP HTTP

SSL(7) SSL(?)
o >

TLS/SSL

TCP

P

MAC MAC

SSL Senvice
Endpoirt

SSL processor or
HTTP proxy

might swiich o

SEL (see notes)

From the IBM WebSphere Developer Technical Journal

TLS

® Transport Layer Security
@ Is“above” the transport layer provided by TCP/IP

@ TLS can implement secure channels even if the lower layers of
the network are adversarial

@ But if the network is arbitrarily adversarial, TLS cannot
prevent Denial of Service

® IPSec and authenticated versions of DNS and BGP to
make the network less adversarial (next time)

® Also, secure channels dont hide traffic (source/destination,
rate of communication)

Secure Communication
Infrastructure

@ Goal: a way for Alice and Bob to setup a private and authenticated

communication channel (can give a detailed SIM-definition)

@ Simplest idea: Use public-key encryption to send signed messages
CCA Secure. Can use Existentially unforgeable signatures. With a sequence
hybrid encryption. number and channel ID to prevent replay/reordering.

@ Limitation: Alice, Bob need to know each others public-keys

@ Also, room for efficiency improvements
@ Once a secret-Key is setup, can use symmetric-key
authenticated encryption instead of using signatures
@ If fresh PKE key in each authenticated session, only CPA
security needed
@ Can maintain state (keys, counters) throughout the session

Secure Communication
Infrastructure

@ Secure Communication Sessions

(Authenticated)

@ Handshake protocol: establish private shared keys< Key-Exchange

@ Record protocol: use efficient symmetric-key schemes

@ Server-to-server communication: Both parties have (certified)

public-keys

@ Client-server communication: server has (certified) public-keys

@ Client "knows” server. Server willing to talk to all clients

@ Client-Client communication (e.g., email)
Clients share public-keys in ad hoc
ways

/\

Server may “know” (some) clients
too, using passwords, pre-shared
keys, or if they have (certified)
public-keys. Often implemented in
application-layer

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first ssh
connection to a server)

® Better idea: Chain of trust

@ Client knows a Certification Authoritys public key (for signature)
IdenTrust] digicert | SO0, | @ iz

%Go Daddyo Google Trust Services

Certificate Authorities

@ How does a client know a servers public-key?

@ Based on what is received during a first session? (e.g., first ssh
connection to a server)

@ Better idea: Chain of trust

@ Client knows a Certification Authoritys public key (for signature)

® Bundled with the software/hardware

@ Certification Authority signs the signature verification key of the
server (possibly via a chain)

® CA is assumed to have verified that the PK was generated by
the “correct” server before signing

® Validation standards: Domain/Extended validation

Forward Secrecy

@ Servers have long term public keys that are certified

@ Would be enough to have long term signature keys, but in
practice sometimes long tferm decryption keys too

@ Problem: if the long tferm decryption key is leaked, old
communications are also revealed

® Adversary may have stored (or even actively participated in)
old sessions which it couldnt read earlier

@ Solution: Do a fresh secure key-exchange for each session
(authenticated using signatures)

@ TLS 1.3 removes support for static keys (except for
externally prepared Pre-Shared Keys)

A Simple Secure
Communication Scheme

& Handshake Servers PK either trusted (from
' i ' ion for e.
s Client sends fresh session keys for MAC 2 Previous session for e.g) or
. certified by a trusted CA, using
and SKE to the server USlng SIM-CCA a Digital Signature scheme
secure PKE, with servers PK (i.e. over
an unauthenticated, but private channel) Does not have
; _ forward secrecy!
@ For authentication only: use MAC Not allowed in TLS 1.3

@ In fact, a "stream-MAC": To send more
than one message, but without allowing
reordering

@ For authenftication + encryption, encrypt-
then-MAC (“stream” versions)

@ Or better, use Authenticated Encryption

A Simple Secure
Communication Scheme

; Servers message is authenticated,
® Handshake - with forward secrecy and can include additional data,

@ Client sends first message of a key encrypted using the newly defined
B + l d d Key. Also, includes a certificate of
e>$c ange protocol and server respo.n S B SO
with the second message. Symmetric

keys derived from the resulting secret. ~ Need fo avoid replay aftacks
(infeasible for server to explicitly

@ For authentication only: use MAC checkiforgreplayed cipherfexts)

@ In fact a “stream-MAC”: To send more Recall “inefficient” domain-

than one message, but without allowing ~ &xfension of MAC: Add a
sequence number (and a

reorderlng session-specific nonce) to each

_an : message before MAC'ing
@ For authentication + encryption, encrypt-

then-MAC (\Sfream - versions) MAC serves dual purposes of

y) CCA security and authentication
@ Or better, use Authenticated Encryption

Negotiations on protocol version,

“cipher suites” for SKE (block-ciphers

@ Handshake - with forward secrecy & hash), PKE & signature algorithms.

@ Client sends first message of a key e.g. cipher-suite: RSA-OAEP for key-
exchange protocol and server responds exchange, AES for SKE,
HMAC-SHA?256 for MAC

with the second message. Symmetric (In TLS 1.3, Auth. Enc.)
keys derived from the resulting secret.
TLS 1.3 allows only Diffie-Hellman
Ly - by HK
a For authentication only: use MAC i S G oY DO
(TLS 1.2 allows a non-forward secure

key exchange using RSA PKE)
& In fact, a “stream-MAC”: To send more

than one message, but without allowing 7 <5 yses MaC-then-encrypt Not

r‘eor‘der‘ing CCA secure in general, but secure
with stream-cipher (and CBC MAC).

@ For authentication + encryption, encrypt- TLS 1.3 uses AEAD.

then-MAC (“stream” versions)

Several details on closing sessions,
session caching, resuming sessions,

@ Or better, use Authenticated Encryption .
using pre-shared keys ...

TLS: Some Considerations

@ Overall security goal: Authenticated and Confidential Channel
Establishment (ACCE), or Server-only ACCE

@ Handshake Protocol
@ Cipher suites are negotiated, not fixed — "Downgrade attacks”

® Doesnt use CCA secure PKE, but is overall CCA secure if error in
decryption “never revealed” (tricky to ensure!)

@ Record Protocol
@ Using MAC-then-Encrypt (as in TLS 1.2) is tricky:

@ CCA-secure when using SKE implemented using a stream
cipher (or block-cipher in CTR mode) or CBC-MAC

@ But insecure if more information revealed on decryption fails

@ e.g., different times taken by MAC check (or different error
messages!) when a format error in decrypted message

@ TLS 1.3 uses easier to analyse protocols

‘é‘

TLS: Some Considerations

Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protocols
@ Often in complex mechanisms created for efficiency

@ Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

@ Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS 1.2)

Bugs in implementations
Side-channels that are not originally considered

Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

TLS: Some Considerations

@ Numerous vulnerabilities keep surfacing

FREAK, DROWN, POODLE, Heartbleed, Logjam, ...
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

@

"

cnceryprion rrom RSA PKCS#1 vl.5 — Known 1o be noi CChH
secure and replaced in 1998 — is still used in TLS)

@ Bugs in implementations
@ Side-channels that are not originally considered

@ Back-Doors (?) in the primitives used in the standards

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

