
Communication Protocols
Lecture 16

TLS

We saw...

Symmetric-Key Components

SKE, MAC

Public-Key Components

 PKE, Digital Signatures

Building blocks: Block-ciphers (AES), Hash-functions (SHA-3),
Trapdoor PRG/OWP for PKE (e.g., DDH, RSA) and
Random Oracle heuristics (in RSA-OAEP, RSA-PSS)

Symmetric-Key primitives much faster than Public-Key ones

Hybrid Encryption gets best of both worlds

Secure Communication in
Practice

Can do at different levels of the “network stack”

e.g., “application layer”, “transportation layer” or “network
layer”

Protocol standards in all cases

To be interoperable

To not insert bugs by doing crypto engineering oneself

e.g.: SSL/TLS (used in https), IPSec (in the “network layer”)

Allows implementation in libraries or within OS kernels

Security Architectures
(An example)

From the IBM WebSphere Developer Technical Journal

Security architecture (client perspective)

TLS

Transport Layer Security

Is “above” the transport layer provided by TCP/IP

TLS can implement secure channels even if the lower layers of
the network are adversarial

But if the network is arbitrarily adversarial, TLS cannot
prevent Denial of Service

IPSec and authenticated versions of DNS and BGP to
make the network less adversarial (next time)

Also, secure channels don’t hide traffic (source/destination,
rate of communication)

Secure Communication
Infrastructure

Goal: a way for Alice and Bob to setup a private and authenticated
communication channel (can give a detailed SIM-definition)

Simplest idea: Use public-key encryption to send signed messages

Limitation: Alice, Bob need to know each other’s public-keys

Also, room for efficiency improvements

Once a secret-key is setup, can use symmetric-key
authenticated encryption instead of using signatures

If fresh PKE key in each authenticated session, only CPA
security needed

Can maintain state (keys, counters) throughout the session

CCA Secure. Can use
hybrid encryption.

Existentially unforgeable signatures. With a sequence
number and channel ID to prevent replay/reordering.

Secure Communication
Infrastructure

Secure Communication Sessions

Handshake protocol: establish private shared keys

Record protocol: use efficient symmetric-key schemes

Server-to-server communication: Both parties have (certified)
public-keys

Client-server communication: server has (certified) public-keys

Client “knows” server. Server willing to talk to all clients

Client-Client communication (e.g., email)
Clients share public-keys in ad hoc
ways

Server may “know” (some) clients
too, using passwords, pre-shared
keys, or if they have (certified)

public-keys. Often implemented in
application-layer

(Authenticated)
Key-Exchange

Certificate Authorities

How does a client know a server’s public-key?

Based on what is received during a first session? (e.g., first ssh
connection to a server)

Better idea: Chain of trust

Client knows a Certification Authority’s public key (for signature)

Certificate Authorities

Bundled with the software/hardware

Certification Authority signs the signature verification key of the
server (possibly via a chain)

CA is assumed to have verified that the PK was generated by
the “correct” server before signing

Validation standards: Domain/Extended validation

How does a client know a server’s public-key?

Based on what is received during a first session? (e.g., first ssh
connection to a server)

Better idea: Chain of trust

Client knows a Certification Authority’s public key (for signature)

Forward Secrecy
Servers have long term public keys that are certified

Would be enough to have long term signature keys, but in
practice sometimes long term decryption keys too

Problem: if the long term decryption key is leaked, old
communications are also revealed

Adversary may have stored (or even actively participated in)
old sessions which it couldn’t read earlier

Solution: Do a fresh secure key-exchange for each session
(authenticated using signatures)

TLS 1.3 removes support for static keys (except for
externally prepared Pre-Shared Keys)

A Simple Secure
Communication Scheme

Handshake

Client sends fresh session keys for MAC
and SKE to the server using SIM-CCA
secure PKE, with server’s PK (i.e. over
an unauthenticated, but private channel)

For authentication only: use MAC

In fact, a “stream-MAC”: To send more
than one message, but without allowing
reordering

For authentication + encryption, encrypt-
then-MAC (“stream” versions)

Or better, use Authenticated Encryption

Server’s PK either trusted (from
a previous session for e.g) or

certified by a trusted CA, using
a Digital Signature scheme

Does not have
forward secrecy!

Not allowed in TLS 1.3

A Simple Secure
Communication Scheme

Handshake - with forward secrecy

Client sends first message of a key
exchange protocol and server responds
with the second message. Symmetric
keys derived from the resulting secret.

For authentication only: use MAC

In fact, a “stream-MAC”: To send more
than one message, but without allowing
reordering

For authentication + encryption, encrypt-
then-MAC (“stream” versions)

Or better, use Authenticated Encryption

Recall “inefficient” domain-
extension of MAC: Add a
sequence number (and a

session-specific nonce) to each
message before MAC’ing

Server’s message is authenticated,
and can include additional data,

encrypted using the newly defined
key. Also, includes a certificate of

its signature key.

MAC serves dual purposes of
CCA security and authentication

Need to avoid replay attacks
(infeasible for server to explicitly
check for replayed ciphertexts)

TLS (SSL)

Handshake - with forward secrecy

Client sends first message of a key
exchange protocol and server responds
with the second message. Symmetric
keys derived from the resulting secret.

For authentication only: use MAC

In fact, a “stream-MAC”: To send more
than one message, but without allowing
reordering

For authentication + encryption, encrypt-
then-MAC (“stream” versions)

Or better, use Authenticated Encryption

Negotiations on protocol version,
“cipher suites” for SKE (block-ciphers
& hash), PKE & signature algorithms.

e.g. cipher-suite: RSA-OAEP for key-
exchange, AES for SKE,
HMAC-SHA256 for MAC
(In TLS 1.3, Auth. Enc.)

TLS 1.2 uses MAC-then-encrypt! Not
CCA secure in general, but secure
with stream-cipher (and CBC MAC).

TLS 1.3 uses AEAD.

Several details on closing sessions,
session caching, resuming sessions,

using pre-shared keys …

TLS 1.3 allows only Diffie-Hellman
key-exchange followed by HKDF

(TLS 1.2 allows a non-forward secure
key exchange using RSA PKE)

TLS: Some Considerations
Overall security goal: Authenticated and Confidential Channel
Establishment (ACCE), or Server-only ACCE

Handshake Protocol

Cipher suites are negotiated, not fixed ³ “Downgrade attacks”

Doesn’t use CCA secure PKE, but is overall CCA secure if error in
decryption “never revealed” (tricky to ensure!)

Record Protocol

Using MAC-then-Encrypt (as in TLS 1.2) is tricky:

CCA-secure when using SKE implemented using a stream
cipher (or block-cipher in CTR mode) or CBC-MAC

But insecure if more information revealed on decryption fails

e.g., different times taken by MAC check (or different error
messages!) when a format error in decrypted message

TLS 1.3 uses easier to analyse protocols

Numerous vulnerabilities keep surfacing
FREAK, DROWN, POODLE, Heartbleed, Logjam, …
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protocols

Often in complex mechanisms created for efficiency

Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS 1.2)

Bugs in implementations

Side-channels that are not originally considered

Back-Doors (?) in the primitives used in the standards

TLS: Some Considerations

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

Numerous vulnerabilities keep surfacing
FREAK, DROWN, POODLE, Heartbleed, Logjam, …
And numerous unnamed ones: www.openssl.org/news/vulnerabilities.html
Listed as part of Common Vulnerabilities and Exposures (CVE) list: cve.mitre.org/

Bugs in protocols

Often in complex mechanisms created for efficiency

Often facilitated by the existence of weakened “export grade”
encryption and improved computational resources

Also because of weaker legacy encryption schemes (e.g.
Encryption from RSA PKCS#1 v1.5 — known to be not CCA
secure and replaced in 1998 — is still used in TLS)

Bugs in implementations

Side-channels that are not originally considered

Back-Doors (?) in the primitives used in the standards

TLS: Some Considerationsï Started life as the Secure Sockets Layer (SSL) protocol, developed
by Netscape.

ï SSL 2.0 (1995) ³ SSL 3.0 (1996)

 TLS 1.0 (1999) ³ TLS 1.1 (2006) ³ TLS 1.2 (2008)

5(Kenny Paterson & Thyla van der Merwe, Dec 2016)

http://www.openssl.org/news/vulnerabilities.html
http://cve.mitre.org/

