

Through the Looking Glass



#### SAFE test

- © Can you see the "Welcome" quiz on SAFE?
  - A. Yes :-)
  - B. No :-/

# Story So Far

| ×          | Winged(x) | Flies(x) | Pink(x) |
|------------|-----------|----------|---------|
| Alice      | FALSE     | FALSE    | FALSE   |
| Jabberwock | TRUE      | TRUE     | FALSE   |
| Flamingo   | TRUE      | TRUE     | TRUE    |



- Propositions by applying formulas to propositions
- Propositions by applying quantifiers to predicates
- Today: Manipulating propositions



#### Question

 $p \rightarrow q$  is equivalent to

A. 
$$p \vee q$$

B. 
$$p \wedge q$$

D. 
$$\neg p \wedge q$$



#### Question

Everyone who flies is winged

```
A. \forall x \text{ Flies}(x) \lor \text{Winged}(x)
```

B. 
$$\forall x \text{ Flies}(x) \land \text{Winged}(x)$$

C. 
$$\forall x \text{ Flies}(x) \land \neg \text{Winged}(x)$$

D. 
$$\forall x \neg Flies(x) \lor Winged(x)$$

E. 
$$\forall x \neg Flies(x) \land Winged(x)$$

 $\forall x \ Flies(x) \rightarrow Winged(x)$ 

# Manipulating Propositions (Exercise)

Conjunction and disjunction with T and F

$$T \wedge q \equiv q$$
  $F \vee q \equiv q$   
 $F \wedge q \equiv F$   $T \vee q \equiv T$ 

Implication involving T and F

$$T \rightarrow q \equiv q$$
  $F \rightarrow q \equiv T$   $q \rightarrow F \equiv \neg q$   $q \rightarrow T \equiv T$ 

Implication involving negation

$$q \rightarrow \neg q \equiv \neg q$$
  $\neg q \rightarrow q \equiv q$ 

Contrapositive

$$p \rightarrow q = (\neg q) \rightarrow (\neg p)$$

Distributive Property

$$p \wedge (q \vee r) = (p \wedge q) \vee (p \wedge r)$$

$$p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$$

- A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)

Flies(Alice)

Flies(Alice) V Flies(J'wock) is True



| ٨ | F | Т |
|---|---|---|
| F | F | F |
| Т | F | Т |

- Flies(Alice)

| ? | F | Т |
|---|---|---|
| F | F | F |
| Т | F | Т |

| V | Т | F |
|---|---|---|
| Т | Т | Т |
| F | Т | F |

¬Flies(Alice)?
¬Flies(J'wock)
is False

- A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)
  - $@ \lor \& \land are reflected as \land \& \lor (resp.)$

De Morgan's Law
$$\neg(p \land q) \equiv (\neg p) \lor (\neg q)$$

$$\neg(p \lor q) \equiv (\neg p) \land (\neg q)$$

$$P \Rightarrow \land P \land q$$

- wire

  A mirror which shows the negation of every proposition
- Reflection changes T & F to F & T (resp.)



#### Quantified Propositions (First-Order) Predicate Calculus

| ×          | Winged(x) | Flies(x) | Pink(x) | ¬Winged(x) |
|------------|-----------|----------|---------|------------|
| Alice      | FALSE     | FALSE    | FALSE   | TRUE       |
| Jabberwock | TRUE      | TRUE     | FALSE   | FALSE      |
| Flamingo   | TRUE      | TRUE     | TRUE    | FALSE      |

- - Not everyone is winged
  - Same as saying, there is someone who is not winged
    - $\emptyset$  i.e.,  $\exists x \neg Winged(x)$  is True

$$\neg$$
( W(a)  $\land$  W(j)  $\land$  W(f) )

 $\neg W(a) \lor \neg W(j) \lor \neg W(f)$ 

$$\neg ( \forall x \ \text{Winged}(x) ) \equiv \exists x \ \neg \text{Winged}(x)$$

- Reflection changes T & F to F & T (resp.)

# Predicates, again

- A predicate can be defined over any number of elements from the domain
  - e.g., Likes(x,y): "x likes y"

| x,y                    | Likes(x,y) |
|------------------------|------------|
| Alice, Alice           | TRUE       |
| Alice, Jabberwock      | FALSE      |
| Alice, Flamingo        | TRUE       |
| Jabberwock, Alice      | FALSE      |
| Jabberwock, Jabberwock | TRUE       |
| Jabberwock, Flamingo   | FALSE      |
| Flamingo, Alice        | FALSE      |
| Flamingo, Jabberwock   | FALSE      |
| Flamingo, Flamingo     | TRUE       |

| x,y                    | Likes(x,y) |
|------------------------|------------|
| Alice, Alice           | TRUE       |
| Alice, Jabberwock      | FALSE      |
| Alice, Flamingo        | TRUE       |
| Jabberwock, Alice      | FALSE      |
| Jabberwock, Jabberwock | TRUE       |
| Jabberwock, Flamingo   | FALSE      |
| Flamingo, Alice        | FALSE      |
| Flamingo, Jabberwock   | FALSE      |
| Flamingo, Flamingo     | TRUE       |

- And we can quantify all the variables of a predicate
- ø e.g. ∀x,y Likes(x,y)
  - Everyone likes everyone
  - False!

| x,y                    | Likes(x,y) |
|------------------------|------------|
| Alice, Alice           | TRUE       |
| Alice, Jabberwock      | FALSE      |
| Alice, Flamingo        | TRUE       |
| Jabberwock, Alice      | FALSE      |
| Jabberwock, Jabberwock | TRUE       |
| Jabberwock, Flamingo   | FALSE      |
| Flamingo, Alice        | FALSE      |
| Flamingo, Jabberwock   | FALSE      |
| Flamingo, Flamingo     | TRUE       |

- - Everyone likes someone (True)
- - Someone is liked by everyone (False)

Order of quantifiers is important!

| X          | У          | Likes(x,y) | ∃y Likes(x,y)<br>i.e., LikesSomeone(x) |
|------------|------------|------------|----------------------------------------|
|            | Alice      | TRUE       |                                        |
| Alice      | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |
|            | Alice      | FALSE      |                                        |
| Jabberwock | Jabberwock | TRUE       | TRUE                                   |
| <b>第一日</b> | Flamingo   | FALSE      |                                        |
|            | Alice      | FALSE      |                                        |
| Flamingo   | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |

- - Everyone likes someone
  - ∀x LikesSomeone(x)
  - True

| ×          | У          | Likes(x,y) | ∃y Likes(x,y)<br>i.e., LikesSomeone(x) |
|------------|------------|------------|----------------------------------------|
|            | Alice      | TRUE       |                                        |
| Alice      | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |
| 107/2016   | Alice      | FALSE      |                                        |
| Jabberwock | Jabberwock | TRUE       | TRUE                                   |
|            | Flamingo   | FALSE      |                                        |
|            | Alice      | FALSE      |                                        |
| Flamingo   | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |

- - Everyone likes someone
  - ∀x (LikesSomeone(x))
  - True

∃x(¬(∃y Likes(x,y)))

| X          | У          | Likes(x,y) | ∃y Likes(x,y)<br>i.e., LikesSomeone(x) |
|------------|------------|------------|----------------------------------------|
|            | Alice      | TRUE       |                                        |
| Alice      | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |
|            | Alice      | FALSE      |                                        |
| Jabberwock | Jabberwock | TRUE       | TRUE                                   |
|            | Flamingo   | FALSE      |                                        |
|            | Alice      | FALSE      |                                        |
| Flamingo   | Jabberwock | FALSE      | TRUE                                   |
|            | Flamingo   | TRUE       |                                        |

- - Everyone likes someone
  - ∀x LikesSomeone(x)
  - True

- - Someone doesn't like anyone
  - ∃x (DoesntLikeAnyone(x))
  - False

| ×          | У          | Likes(x,y) |
|------------|------------|------------|
|            | Alice      | TRUE       |
| Alice      | Jabberwock | FALSE      |
|            | Flamingo   | TRUE       |
|            | Alice      | FALSE      |
| Jabberwock | Jabberwock | TRUE       |
|            | Flamingo   | FALSE      |
|            | Alice      | FALSE      |
| Flamingo   | Jabberwock | FALSE      |
|            | Flamingo   | TRUE       |

| ×          | У           | Likes(x,y) | ∀x Likes(x,y)<br>i.e., EveryoneLikes(y) |
|------------|-------------|------------|-----------------------------------------|
| Alice      |             | TRUE       |                                         |
| Jabberwock | Alice       | FALSE      | FALSE                                   |
| Flamingo   |             | FALSE      |                                         |
| Alice      | BANGE STATE | FALSE      |                                         |
| Jabberwock | Jabberwock  | TRUE       | FALSE                                   |
| Flamingo   |             | FALSE      |                                         |
| Alice      | Flamingo    | TRUE       | FALSE                                   |
| Jabberwock |             | FALSE      |                                         |
| Flamingo   |             | TRUE       |                                         |

- - Someone is liked by everyone
  - False

- - Everyone is disliked by someone
  - True

#### Moving the Quantifiers

- $\forall x \ \forall y \ P(x,y) = \ \forall y \ \forall x \ P(x,y) \ for all pairs (x,y), \ P(x,y) \ holds$
- $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$  for some pair (x,y), P(x,y) holds

- Scope of x extends to the end:  $\forall x (P(x) \lor R)$
- i.e., if domain is {a<sub>1</sub>,...,a<sub>N</sub>}
   (P(a<sub>1</sub>)∨R) ∧ ... ∧ (P(a<sub>N</sub>)∨R)

- R evaluates to True or False (indep of x)
- When R is True, both equivalent (to True)
- Also, when R is False, both equivalent
- Hence both equivalent

#### Moving the Quantifiers

 $\exists x \ R \rightarrow P(x) = R \rightarrow (\exists x \ P(x))$ 

#### Question

 $\bullet \forall x \ \underline{P(x)} \rightarrow \underline{R}$  is equivalent to:

A. 
$$(\forall x P(x)) \rightarrow R$$

B. 
$$(\exists x P(x)) \rightarrow R$$

C. 
$$(\forall x P(x)) \lor R$$

D. 
$$(\exists x P(x)) \lor R$$

E. 
$$(\forall x P(x)) \land R$$

$$\forall x \ \underline{\neg P(x) \lor R}$$

$$\equiv (\forall x \ \underline{\neg P(x))} \lor R$$

$$\equiv \neg (\exists x \ \underline{P(x))} \lor R$$

## Moving the Quantifiers

- $\exists x \exists y P(x,y) = \exists y \exists x P(x,y)$
- When R is independent of x

$$\forall x P(x) \lor R \equiv (\forall x P(x)) \lor R$$

$$\exists x P(x) \lor R \equiv (\exists x P(x)) \lor R$$

$$\forall x R \rightarrow P(x) \equiv R \rightarrow (\forall x P(x))$$

$$\forall x P(x) \rightarrow R \equiv (\exists x P(x)) \rightarrow R$$

$$\forall x P(x) \land R \equiv (\forall x P(x)) \land R$$

$$\exists x P(x) \land R = (\exists x P(x)) \land R$$

$$\exists x \ R \rightarrow P(x) \equiv R \rightarrow (\exists x \ P(x))$$

$$\exists x P(x) \rightarrow R \equiv (\forall x P(x)) \rightarrow R$$

Not equivalent to!

But 
$$(\forall x P(x)) \lor (\forall x Q(x)) \not\equiv \forall x (P(x) \lor Q(x))$$

#### Today

- Negating propositions (the looking glass)
  - De Morgan's law
  - When quantifiers are involved
- Multiple quantifiers
  - Order of quantifiers matters
  - Negation
- Moving quantifiers around