Through the
Looking Glass

s
"

)
-

9

SAFE fest

® Can you see the "Welcome” quiz on SAFE?
aA. Yes :-)

#B. No :-/

@ Propositions from predicates

D

D

Story So Far

X Winged(x) Flies(x) Pink(x)
Alice FALSE FALSE FALSE
C\
Jabberwock TRUE TR\<E ;ALSE
Flamingo TRUE TR% /TRUE

[T

7)

>0

Propositions by applying formulas fo propositions

Propositions by applying quantifiers to predicates

a vx P(x), 3ax P(x)

@ Today: Manipulating propositions

Question

9

@ p — q IS equivalent to

A. pvg
B. pAg
C. .pVvgq
D. -pAQ
E. -p Vv g

Question

@ Everyone who flies is winged

mo 0w P

VX
VX
VX

VX
VX

Flies(x) v Winged(x)
Flies(x) A Winged(x)
Flies(x) A “Winged(x)
~Flies(x) v Winged(x)
~Flies(x) A Winged(x)

J vx Flies(x)—Winged(x)

Manipulating Propositions
(Exercise)

Conjunction and disjunction with T and F

Implication involving T and F

Implication involving negation
Contrapositive p — q = (+q) — (-p)

Distributive Property prlgv=(praqviprn
pvi@an=(pvaga(pvr

The Looking Glass

@ A mirror which shows the negation of every proposition

@ Reflection changes T & F to F & T (resp.)
@ v & A are reflected as A & v (resp.)

Flies(Alice) : - Flies(Alice)

Flies(Alice) v vITIFEL | 2F [T ~Flies(Alice) ?
Flies(J'wock) TN T | T BN F | F ~Flies(T'wock)
IS True B T [- R | T IS False
AfET Y[v]T|F
FIF|F | o | T|T|T
Tl el T s [F|T]|F

The Looking Glass

wire
@ A mirror which shows the negation of every prepesition

@ Reflection changes T & F to F & T (resp.)
@ v & A are reflected as A & v (resp.)

De Morgans Law

-(pAq) = (-p) Vv (-q)
-(pvq)

2 m \ SN

Eibpvq

The Looking Glass

wire

@ A mirror which shows the negation of every prepesition-

@ Reflection changes T & F to F & T (resp.)
@ v & A are reflected as A & v (resp.)

e Izn_]c'

-

Quantified Propositions
(First-Order) Predicate Calculus

X Winged(x) ~Winged(x)

Alice FALSE

FALSE

Jabberwock

Flamingo FALSE

@ vx Winged(x) is False

@ Not everyone is winged
@ Same as saying, there is someone who is not winged

@ i.e., 3x aWinged(x) is True ~(W(a) A W(j) A W(F))‘

ol - ((vx Winged(x)) = 3x =Winged(x) | | ~W(@) v ~W(j) v ~W(f)

The Looking Glass

@ Reflection changes T & F to F & T (resp.)
@ v & A are reflected as A & v (resp.)

a|V & 3 are reflected as 3 & Vv (resp.)

2 - r/q

= el

vx Pred(x) 3x -Pred(x)

Ix Pred(x) vX ~Pred(x)

Predicates, again

@ A predicate can be defined over any number of elements from
the domain

@ e.qg., Likes(x,y): “x likes y”

X,y Likes(x,y)

Alice, Alice

Alice, Jabberwock

Alice, Flamingo

Jabberwock, Alice

Jabberwock, Jabberwock

Jabberwock, Flamingo FALSE
Flamingo, Alice FALSE
Flamingo, Jabberwock FALSE

Flamingo, Flamingo TRUE

Two quantifiers

R Likes(x,y)

Alice, Alice

Alice, Jabberwock

Alice, Flamingo

Jabberwock, Alice

Jabberwock, Jabberwock

Jabberwock, Flamingo FALSE
Flamingo, Alice FALSE
Flamingo, Jabberwock FALSE

Flamingo, Flamingo TRUE

@ And we can quantify all the variables of a predicate

@ e.g. Vxy Likes(x,y)

@ Everyone likes everyone

@ False!

Two quantifiers

XY

Likes(x,y)

Alice, Alice

Alice, Jabberwock

Alice, Flamingo

Jabberwock, Alice

Jabberwock, Jabberwock

Jabberwock, Flamingo FALSE
Flamingo, Alice FALSE
Flamingo, Jabberwock FALSE

Flamingo, Flamingo

TRUE

@ vx(zl_y Likes(x,_yD

@ Everyone likes someone (True)

@ 3y vx Likes(x,y)

@ Someone is liked by everyone (False)

Order of
quantifiers

~

IS Important!

_

J

Two quantifiers

: 3y Likes(x,
. Y Likes(x,y} i.e., L?kesSorineZZle(x)
Alice TRUE
Alice | Jabberwock TRUE
Flamingo TRUE
Alice
Jabberwock Jabberwock TRUE
Flamingo FALSE
Alice FALSE
Flamingo Jabberwock FALSE
Flamingo TRUE

o vx(3y Likes(x,y))

@ Everyone|likes someone

@ VX LikesSomeone(xD

@ True

Two quantifiers

: 3y Likes(x,
. Y Likes(x,y} i.e., L?kesSorineZZle(x)
Alice TRUE
Alice | Jabberwock TRUE
Flamingo TRUE
Alice
Jabberwock Jabberwock TRUE
Flamingo FALSE
Alice FALSE
Flamingo Jabberwock FALSE
Flamingo TRUE

o vx(3y Likes(x,y))

o ax(a(3y Likes(x,y)))

@ Everyone|likes someone

@ VX LikesSomeone(xD

@ True

Two quantifiers

: 3y Likes(x,
. Y Likes(x,y} i.e., L?kesSorineZZle(x)
Alice TRUE
Alice | Jabberwock TRUE
Flamingo TRUE
Alice
Jabberwock Jabberwock TRUE
Flamingo FALSE
Alice FALSE
Flamingo Jabberwock FALSE
Flamingo TRUE

@ 3IX (y_y -.Likes(x,yD
3 Someone/\poesn"r like anyone
@ 3X @oesn’rLikeAnyone(x))

@ False

o vx(3y Likes(x,y))

@ Everyone|likes someone
3 VX LikesSomeone(xD

@ True

Two quantifiers

X y Likes(x,y)
Alice
Alice Jabberwock

Flamingo

Alice
Jabberwock Jabberwock
Flamingo FALSE
Alice FALSE
Flamingo Jabberwock FALSE
Flamingo TRUE

@ 3y vx Likes(x,y)

Two quantifiers

X Y

Alice

Jabberwock Alice

Likes(x,y)

vx Likes(x,y)
i.e., EveryoneLikes(y)

FALSE

Flamingo

Alice
Jabberwock Jabberwock

Flamingo

Alice

Jabberwock Flamingo

Flamingo

@ 3y vx Likes(x,y)
@ Someone is liked by
everyone

@ False

FALSE
FALSE

FALSE

FALSE

FALSE

@ vy 3x -Likes(x,y)

@ True

@ Everyone is disliked
by someone

Moving the Quantifiers

@ vx vy P(x,y) = vy vx P(x,y) for all pairs (x,y), P(x,y) holds
@ 3Ix 3y P(x,y) = 3y 3Ix P(x,y) for some pair (x,y), P(x,y) holds

@ VX P(x) vR = (vx P(x)) v R (where R is independent of x)

/\ . |» R evaluates to True or False (indep of x)
Scope of x extends fo > When R is True, both equivalent (to True)
the end: vx (P(x) v R) » Also, when R is False, both equivalent
RS 1y - » Hence both equivalent

> i.e., if domain is {ay,...,an}

(P(a;)VR) A ... A (P(an)VR)

Moving the Quantifiers

@ vx vy P(x,y) = vy vx P(x,y) for all pairs (x,y), P(x,y) holds
@ 3Ix 3y P(x,y) = 3y 3Ix P(x,y) for some pair (x,y), P(x,y) holds

@ VX P(x) vR = (vx P(x)) v R (where R is independent of x)
vx P(x) A R = (vx P(x)) A R
Ix P(x) vR =(3x P(x)) v R
Iax P(x) AR =(3x P(x)) AR

@ VX R = P(x) = R — (vx P(x))
Ix R — P(x) = R — (3x P(x))

9

@ vx P(x) — R is equivalent to:

Question

vx aP(x) v R
A. (vxP(x)) — R = (vx -P(x)) v R
B. (3x P(x)) — R T TS

C. (vxP(x))VvR
D. (3ax P(x)) v R
E. (vxP(X))AR

Moving the Quantifiers

a vx vy P(x,y) = vy vx P(x,y)

@ 3x 3y P(x,y) = 3y 3x P(x,y)

@ When R is independent of x
vXx P(X) VR =(vxP(x)) VR | vx P(X) A R = (vx P(x)) A R
ax P(x) vR=(GEx P(x)) vR ax P(x) A R = (3x P(x)) A R
VX R > P(x) =R — (vx P(x)) | 3ax R — P(x) = R — (3x P(x))
vx P(x) > R=(3xP(x) >R | ax P(x) - R = (vx P(x)) = R

Not equivalent to!]

@ (vx P(x)) A (vx Q(x)) = vx (P(x) A Q
a But (vx P(x)) v (vx Q(x)) 2 vx (P(x) v Q(x))
a (3x P(x)) v (3x Q(x)) = 3ax (P(x) v Q(x))
@ But (3x P(x)) A (3x Q(x)) = 3Ix (P(x) A Q(x))

Today

@ Negating propositions (the looking glass)
@ De Morgans law
@ When quantifiers are involved
@ Multiple quantifiers
@ Order of quantifiers matters
@ Negation

@ Moving quantifiers around

