In Action

|1C

O)
O
-

Proofs

Poll

@ Did you attend the tutorials?

A: None of them

B: On Monday only

C: On Tuesday only

D: On Monday and Tuesday

Review Question

@ Consider the following propositions:
1. (3x Flies(x)) — (vx Flies(x))
2. VXY Flies(x) < Flies(y)
3. 3x vy Flies(x) < Flies(y)
4. 3Ix VY Flies(x) — Flies(y)

Which one(s) say “Either everyone flies or no one flies” ?

A: None of them
B: 1 only

C: 1 and 2 only
D: 1, 2 and 3 only
E: 1, 2, 3 and 4

Using Logic

@ Logic is used to deduce results in any (mathematically
defined) system

@ Typically a human endeavour (but can be automated if the
system is relatively simple)

@ Proof is a means to convince others (and oneself) that a
deduced result is correct

@ Verifying a proof is meant to be easy (automatable)

@ Coming up with a proof is typically a lot harder (not easy
to fully automate, but sometimes computers can help)

What are we proving?

@ We are proving propositions
@ Often called Theorems, Lemmas, Claims, ...

@ Propositions may employ various predicates already specified
as Definitions

@ e.g. All positive even numbers are larger than 1
a vxel (Positive(x) A Even(x)) — Greater(x,1)

@ These predicates are specific to the system (here arithmetic).
The system will have its own “axioms” too (e.g., VX x+0=Xx)

@ For us, numbers (reals, integers, rationals) and other
systems like sets, graphs, functions, ...

@ Goal: Use logical operations to establish the truth of a given
proposition, starting from the axioms (or already proven
propositions) in a system

Example

@ Our system here is that of integers (comes with the set of
integers Z and operations like +, -, ¥, /, exponentiation...)

@ We will not attempt to formally define this system!

@ Definition: An integer x is said fo be odd if there is an
infeger y s.1. x=2y+1

"if” used by convention;
o Odd(x) = yed (x = 2Y+1) actually means “iff”

@ Proposition: If x is an odd integer, so is x2

a VxeZ 0dd(x) — Odd(x?2)

Example

a Def: Odd(x) = 3yeZ (x = 2y+l)
@ Proposition: vxeZ Odd(x) — Odd(x?2)

@ Proof: (should be written in more readable English)
@ Let x be an arbitrary element of Z. Variable x infroduced.

@ Suppose Odd(x). Then, we need to show Odd(x2).
@ By def., 3yeZ x=2y+l. So let x=2a+l where a€eZ4.

@ Then, x2 = (2a+1)2 = 4a2 + 4a + 1
= 2(2a2+2a) + 1.
IweZ (2a2+2a)=w.

So let 2a2+2a=b, where be#

Hence, x2 = 2b+l
Then, by definition, Odd(x2).

Qe Q Q@ Q

Hence for every x, Odd(x) — Odd(x2). QED.

Anatomy of a Proof

@ Clearly state the proposition p to prove (esp’ly, if rephrased)

@ Derive propositions po, .., pn Where for each i, either p;j is an
axiom or an already proven proposition in the system, or

(Po A Pt A . A Pi1) — Pi
@ Usually one or two propositions so far imply the next

@ An explanation should make it easy to verify the implication
(e.g., "By pj and pi.1, we obtain p;“)

@ pn Should be the proposition to be proven.

@ Notation: This sequence is often written as po = p1 = ... = pr

@ May use “sub-routines” (lemmas). [e.g., po = ... = pk. Now, by

Lemma 1, pi A pkx — pk+1. SO we have ps1. Now, ... = pn.]

Templates

@ To prove p — Q:

@ May set po as p (even though we dont know if p is True),
and proceed to prove q

@ Proof starts with “"Suppose p.”’
@ Why is this a proof of p — q?
@ If p is False, we are done with the proof

@ If p is True, the above proof holds

@ In either case p — q holds

Templates

@ Often it is helpful to first rewrite the proposition into an

equivalent proposition and prove that. Should clearly state this
if you are doing this.

@ An important example: contrapositive

9 P s dinE =R
@ Both equivalent to -p v q

@ An example:

@ If function f is "hard” then crypto scheme S is "secure”
= If crypto scheme S is not “secure,” then function f is not

\\hardll

@ To prove the former, we can instead show how to
transform any attack on S into an efficient algorithm for f

More Examples

' Positive infegers |

@ Proposition: vx,yeZ+ x-y > 25 — (x26) v (y26)
@ Enough to prove that: vx,yeZ+ (x<6) A (y<6) — x-y ¢ 25
@ Proposition: "p only if q." i.e., if not q, then not p: -.q — -p
@ Same as p — (g
@ "p if and only if q": That is, (9 — p) A (-q — -p)

@ Equivalent to (@ — p) A (p — q), or p «<— q.
Also, (p — q) A (.p — -q).

Templates

@ Proof by contradiction as an instance of proving equivalent
propositions:

@ p = -p — False. To prove p, enough to show that -p — False.

@ Now, fo prove -p — False, as we saw, we will start by
assuming -p

@ Can start the proof directly by saying "Suppose for the
sake of contradiction, -p” (instead of saying we shall

prove -p — False)
@ pn is simply “False.’

@ E.g.,, we may have -p = .. = q .. = =-q = False

@ "But that is a [con’rradic’rion%e p holds.’

Example

@ Claim: Theres a village barber who shaves exactly those in
the village who dont shave themselves

@ Proposition: The claim is false

@ Proposition, formally: -(3Bvx -shave(x,x) «<— shave(B,x))

@ Suppose for the sake of contradiction,
3B vx ashave(x,x) <« shave(B,x)

@ (3B vx ashave(x,x) < shave(B,x))
= (3B -shave(B,B) «— shave(B,B))

= 3B False

= False, which is a contradiction!

Example

@ For every pair of distinct primes p,q, logs(q) is irrational
@ (Will use basic facts about log and primes from arithmetic.)

@ Suppose for the sake of contradiction that there exists a pair
of distinct primes (p,q), s.t. logp(q) is rational.

@ = logp(q) = a/b for positive integers a,b.
(Note, since g>1, logp(q) > O.)
@ = pa/b=q = pa=qgp.
@ But p, q are distinct primes. Thus p¢ and gb are two distinct

prime factorisations of the same integer!

@ Contradicts the Fundamental Theorem of Arithmetic!

%Will prove la’rer>

Template

@ To prove 3Ix P(x)
@ Demonstrate a particular value of x s.t. P(x) holds

@ e.g. to prove 3Ix P(x) — Q(x)

@ find an x s.t. P(x) — Q(x) holds
@ if you can find an x s.t. P(x) is false, done!
@ or, you can find an x s.t. Q(x) is true, done!

@ (May not be easy to show either, but still may be able to
find an x and argue -P(x) v Q(x))

@ (May not be able to find one, but still show one exists!)

Question

@ To prove -(vx P(x)), the most natural/correct approach is to:
A. prove that -P(x) holds for all x

B. prove that P(x) holds for all x

: Ix ~P(x)
C. demonstrate an x s.t. P(x) is false (J

D. demonstrate an x s.t. P(x) is true

E. prove that P(x) or -P(x) holds for all x

Templates

a To prove vx P(x) — Q(x)

o

_et x be an arbitrary element (in the domain of the

predicates P and Q)

@ Now prove P(x) — Q(x)

D

@ Assume P(x) holds, i.e., set po to be P(x)
@ Prove Q(x) using a sequence, po = p1 = .. = pn, Where pn
is Q(x)

Since x is arbitrary, this proof applies fo every x. Hence

vx P(x) — Q(x)

@ Caution: You are not proving (vx P(x)) — (vx Q(x)). So to prove
Q(x), may only assume P(x), and not P(x’) for x" # x.

May or may not be
possible/true for a given
problem.

Some Valid
Approaches

a vx P(x)

@ Let X be an arbitrary element
Show Q(x) — P(x)

4 A
At this point, we have

reduced the problem of
proving P(x) to the

problem of proving Q(x)

Show Q(x) holds

S Y

Then P(x) Because, (Q(x) A (Q(x) — P(x)) = P(x) A (...)

@ dX -lQ(X)

4 R
If we demonstrate an

element x s.t. Q(x)—P(x)

holds, now enough to

@ Show 3x Q(x) — P(x)
Show Vvx -P(x)

show that for that x, P(x)

holds
_ /

a Or, Show vx -Q(x) (Much more than needed, but OK)

May or may not be
possible/true for a given
problem.

Some Valid
Approaches

@ Ax P(X) A Q(x) = vx -P(x) v =-Q(X) % Rewrite

@ Show vx ~Q(X)

a Or, show vx -P(x)

@ Or, more generally, show vx P(x) — -Q(x)
a 3x P(x)

& Show P(0)

@ - vx P(x) = ax -P(x)

Rewrite

AR

@ Show -P(0)

Today

@ Proofs : A style guide

@ Proofs should be easy fo verify. All the cleverness goes into
finding/writing the proof, not reading/verifying it!

@ Multiple approaches:

@ Today: Direct deduction; Rewriting the proposition, e.q.,
as contrapositive; Proof by contradiction; Proof by giving
a (counter)example, when applicable.

@ Next:
@ Proof by case analysis

@ Mathematical induction

