

Proofs: Logic in Action

Did you attend the tutorials?

A: None of them
B: On Monday only
C: On Tuesday only
D: On Monday and Tuesday

Review Question

Consider the following propositions:
1. (∃x Flies(x)) → (∀x Flies(x))
2. ∀x,y Flies(x) ↔ Flies(y)
3. ∃x ∀y Flies(x) ↔ Flies(y)

4. $\exists x \forall y Flies(x) \rightarrow Flies(y)$

Which one(s) say "Either everyone flies or no one flies" ?

A: None of them
B: 1 only
C: 1 and 2 only
D: 1, 2 and 3 only
E: 1, 2, 3 and 4

Using Logic

Logic is used to deduce results in any (mathematically defined) system

Typically a human endeavour (but can be automated if the system is relatively simple)

Proof is a means to convince others (and oneself) that a deduced result is correct

Verifying a proof is meant to be easy (automatable)

Coming up with a proof is typically a lot harder (not easy to fully automate, but sometimes computers can help)

What are we proving?

- We are proving propositions Often called Theorems, Lemmas, Claims, ... Propositions may employ various predicates already specified as Definitions e.g. All positive even numbers are larger than 1 $\forall x \in \mathbb{I} (\underline{Positive}(x) \land \underline{Even}(x)) \rightarrow \underline{Greater}(x,1)$ These predicates are specific to the system (here arithmetic). The system will have its own "axioms" too (e.g., $\forall x x+0=x$) For us, numbers (reals, integers, rationals) and other systems like sets, graphs, functions, ... Goal: Use logical operations to establish the truth of a given proposition, starting from the axioms (or already proven
 - propositions) in a system

Our system here is that of integers (comes with the set of integers ℤ and operations like +, -, *, /, exponentiation...)

We will not attempt to formally define this system!

Definition: An integer x is said to be odd if there is an integer y s.t. x=2y+1

 \bigcirc Odd(x) = $\exists y \in \mathbb{Z}$ (x = 2y+1)

"if" used by convention; actually means "iff"

Proposition: If x is an odd integer, so is x^2

 $\forall x \in \mathbb{Z} \quad Odd(x) \rightarrow Odd(x^2)$

- Proposition: $\forall x \in \mathbb{Z} \text{ Odd}(x) \rightarrow \text{Odd}(x^2)$
- Proof: (should be written in more readable English)
 - O Let x be an arbitrary element of \mathbb{Z} . Variable x introduced.
 - Suppose Odd(x). Then, we need to show $Odd(x^2)$.

By def., $\exists y \in \mathbb{Z}$ x=2y+1. So let x=2a+1 where a∈ \mathbb{Z} . Variable a

Then,
$$x^2 = (2a+1)^2 = 4a^2 + 4a + 1$$

 $= 2(2a^2+2a) + 1.$ $\Rightarrow \exists w \in \mathbb{Z} (2a^2+2a) = w.$ From arithmetic.

From arithmetic.

Variable b.

- \odot Hence, $x^2 = 2b+1$
- Then, by definition, $Odd(x^2)$.

Anatomy of a Proof

- Clearly state the proposition p to prove (esp'ly, if rephrased)
 Derive propositions p₀, ..., p_n where for each i, either p_i is an axiom or an already proven proposition in the system, or (p₀ ∧ p₁ ∧ ... ∧ p_{i-1}) → p_i
 - Osually one or two propositions so far imply the next
 - An explanation should make it easy to verify the implication (e.g., "By p_j and p_{i-1}, we obtain p_i")
- o p_n should be the proposition to be proven.
- @ Notation: This sequence is often written as $p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_n$
- May use "sub-routines" (lemmas). [e.g., $p_0 \Rightarrow ... \Rightarrow p_k$. Now, by
 Lemma 1, $p_i \land p_k \rightarrow p_{k+1}$. So we have p_{k+1} . Now, ... $\Rightarrow p_n$.]

\bigcirc To prove $p \rightarrow q$:

May set p₀ as p (even though we don't know if p is True), and proceed to prove q
Proof starts with "Suppose p."
Why is this a proof of p → q?
If p is False, we are done with the proof
If p is True, the above proof holds
In either case p → q holds

Often it is helpful to first rewrite the proposition into an <u>equivalent proposition</u> and prove that. Should clearly state this if you are doing this.

An important example: <u>contrapositive</u>

 \oslash Both equivalent to $\neg p \lor q$

An example:

- If function f is "hard" then crypto scheme S is "secure" = If crypto scheme S is not "secure," then function f is not "hard"
- To prove the former, we can instead show how to transform any attack on S into an efficient algorithm for f

More Examples

Positive integers

@ Proposition: $\forall x, y \in \mathbb{Z}^+$ x · y > 25 → (x≥6) ∨ (y≥6)

One set to prove that: $\forall x, y \in \mathbb{Z}^+$ (x<6) ∧ (y<6) → x · y ≤ 25
</p>

Proposition: "p only if q." i.e., if not q, then not p: $\neg q \rightarrow \neg p$

 \oslash Same as $p \rightarrow q$

That is, $(q \rightarrow p) \land (\neg q \rightarrow \neg p)$

Sequivalent to $(q \rightarrow p) \land (p \rightarrow q)$, or $p \leftrightarrow q$.
Also, $(p \rightarrow q) \land (\neg p \rightarrow \neg q)$.

Proof by contradiction as an instance of proving equivalent propositions:

- Ø p = ¬p → False. To prove p, enough to show that ¬p → False.
- Now, to prove $\neg p \rightarrow$ False, as we saw, we will start by assuming $\neg p$
 - Can start the proof directly by saying "Suppose for the sake of contradiction, ¬p" (instead of saying we shall prove ¬p → False)
 - ø p_n is simply "False."

Ø E.g., we may have ¬p ⇒ ... ⇒ q ... ⇒ ¬q ⇒ False

But that is a contradiction! Hence p holds."

Claim: There's a village barber who shaves exactly those in the village who don't shave themselves

Proposition: The claim is false

@ Proposition, formally: ¬(∃B∀x ¬shave(x,x) ↔ shave(B,x))

Suppose for the sake of contradiction, $\exists B \forall x \neg shave(x,x) \leftrightarrow shave(B,x)$

 \Rightarrow False, which is a contradiction!

- The second seco
- (Will use basic facts about log and primes from arithmetic.)
- Suppose for the sake of contradiction that there exists a pair of distinct primes (p,q), s.t. log_p(q) is rational.
- $\Rightarrow \log_{P}(q) = a/b$ for positive integers a,b.

(Note, since q>1, $log_p(q) > 0$.)

- $\Rightarrow p^{a/b} = q \Rightarrow p^a = q^b.$
- But p, q are distinct primes. Thus p^a and q^b are two distinct prime factorisations of the same integer!
- Contradicts the Fundamental Theorem of Arithmetic!

Will prove later

\bigcirc To prove $\exists x P(x)$

- Ø Demonstrate a particular value of x s.t. P(x) holds
- @ e.g. to prove ∃x P(x) → Q(x)
 - of find an x s.t. P(x) → Q(x) holds
 - If you can find an x s.t. P(x) is false, done!
 - o or, you can find an x s.t. Q(x) is true, done!
 - (May not be easy to show either, but still may be able to find an x and argue $\neg P(x) \lor Q(x)$)
 - (May not be able to find one, but still show one exists!)

To prove ¬(∀x P(x)), the most natural/correct approach is to:

- A. prove that $\neg P(x)$ holds for all x
- B. prove that P(x) holds for all x
- C. demonstrate an x s.t. P(x) is false
- D. demonstrate an x s.t. P(x) is true
- E. prove that P(x) or $\neg P(x)$ holds for all x

	$n(\lambda)$	
ЯF	$\neg P(X)$	

To prove ∀x P(x) → Q(x)

- Let x be an arbitrary element (in the domain of the predicates P and Q)
- Now prove $P(x) \rightarrow Q(x)$
 - Assume P(x) holds, i.e., set p_0 to be P(x)
 - Prove Q(x) using a sequence, $p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_n$, where p_n is Q(x)
- Since x is arbitrary, this proof applies to every x. Hence ∀x P(x) → Q(x)

May or may not be possible/true for a given problem.

Some Valid Approaches

Then P(x)
A Let x be an arbitrary element
Show Q(x) \rightarrow P(x)
Show Q(x) holds
Then P(x) Because, (Q(x) \land (Q(x) \rightarrow P(x))) = P(x) \land (...)

Show ∃x Q(x) → P(x)
Show ∀x ¬P(x)

If we demonstrate an element x s.t. $Q(x) \rightarrow P(x)$ holds, now enough to show that for <u>that x</u>, P(x) holds

At this point, we have

Or, Show $\forall x \neg Q(x)$ (Much more than needed, but OK)

May or may not be possible/true for a given p<u>roblem.</u>

Some Valid Approaches

 $\exists x P(x) \land Q(x) = \forall x \neg P(x) \lor \neg Q(x)$

Rewrite

- Show ∀x ¬Q(x)
- \oslash Or, show $\forall x \neg P(x)$
- \oslash Or, more generally, show $\forall x P(x) \rightarrow \neg Q(x)$
- Ø ∃x P(x)
 - Show P(0)
- - Show $\neg P(0)$

Rewrite

Proofs : A style guide

Proofs should be easy to verify. All the cleverness goes into finding/writing the proof, not reading/verifying it!

Multiple approaches:

Today: Direct deduction; Rewriting the proposition, e.g., as contrapositive; Proof by contradiction; Proof by giving a (counter)example, when applicable.

Ø Next:

Proof by case analysis

Mathematical induction