
Proofs: Logic in Action

Euclid (300 BC)



Poll

Did you attend the tutorials? 
 

 A: None of them  

 B: On Monday only  
 C: On Tuesday only  
 D: On Monday and Tuesday  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Review Question
Consider the following propositions:  
   1.  (∃x Flies(x) ) → (∀x Flies(x) )  

   2.  ∀x,y Flies(x) ↔ Flies(y)

   3.  ∃x ∀y Flies(x) ↔ Flies(y)   

   4.  ∃x ∀y Flies(x) → Flies(y)

Which one(s) say “Either everyone flies or no one flies” ? 
 

 A: None of them  

 B: 1 only 
 C: 1 and 2 only 
 D: 1, 2 and 3 only 
 E: 1, 2, 3 and 4  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Using Logic

Logic is used to deduce results in any (mathematically 
defined) system


Typically a human endeavour (but can be automated if the 
system is relatively simple)


Proof is a means to convince others (and oneself) that a 
deduced result is correct


Verifying a proof is meant to be easy (automatable) 


Coming up with a proof is typically a lot harder (not easy 
to fully automate, but sometimes computers can help)



What are we proving?
We are proving propositions


Often called Theorems, Lemmas, Claims, ...

Propositions may employ various predicates already specified 
as Definitions

 e.g. All positive even numbers are larger than 1


∀x∈Z ( Positive(x) ∧ Even(x) ) → Greater(x,1)


These predicates are specific to the system (here arithmetic). 
The system will have its own “axioms” too (e.g., ∀x x+0=x)


For us, numbers (reals, integers, rationals) and other 
systems like sets, graphs, functions, ...


Goal: Use logical operations to establish the truth of a given 
proposition, starting from the axioms (or already proven 
propositions) in a system



Example

Our system here is that of integers (comes with the set of 
integers Z and operations like +, -, *, /, exponentiation...)


We will not attempt to formally define this system!


Definition:  An integer x is said to be odd if there is an 
integer y s.t. x=2y+1


Odd(x) ≡ ∃y∈Z  (x = 2y+1)


Proposition: If x is an odd integer, so is x2


∀x∈Z  Odd(x) → Odd(x2)

“if” used by convention; 
actually means “iff”



Example
Def: Odd(x) ≡ ∃y∈Z  (x = 2y+1)


Proposition: ∀x∈Z Odd(x) → Odd(x2)


Proof: (should be written in more readable English)

Let x be an arbitrary element of Z.     Variable x introduced. 

Suppose Odd(x). Then, we need to show Odd(x2).

By def., ∃y∈Z x=2y+1. So let x=2a+1 where a∈Z.    Variable a.


Then, x2 = (2a+1)2 = 4a2 + 4a + 1 
           = 2(2a2+2a) + 1.               From arithmetic.

∃w∈Z (2a2+2a)=w.                   From arithmetic.


So let 2a2+2a=b, where b∈Z       Variable b.


Hence, x2 = 2b+1

Then, by definition, Odd(x2).   

Hence for every x, Odd(x) → Odd(x2).  QED.



Anatomy of a Proof
Clearly state the proposition p to prove (esp’ly, if rephrased)


Derive propositions p0, ..., pn where for each i, either pi is an 
axiom or an already proven proposition in the system, or   
(p0 ∧ p1 ∧ ... ∧ pi-1) → pi


Usually one or two propositions so far imply the next


An explanation should make it easy to verify the implication 
(e.g., “By pj and pi-1, we obtain pi”)


pn should be the proposition to be proven.


Notation: This sequence is often written as p0 ⇒ p1 ⇒ … ⇒ pn


May use “sub-routines” (lemmas). [e.g., p0 ⇒ … ⇒ pk. Now, by 

Lemma 1, pi ∧ pk  → pk+1. So we have pk+1. Now, … ⇒ pn.]



Templates

To prove p → q:


May set p0 as p (even though we don’t know if p is True), 
and proceed to prove q


Proof starts with “Suppose p.”


Why is this a proof of p → q?


If p is False, we are done with the proof


If p is True, the above proof holds


In either case p → q holds



Templates
Often it is helpful to first rewrite the proposition into an 

equivalent proposition and prove that. Should clearly state this 
if you are doing this.


An important example: contrapositive


p → q ≡ ¬q → ¬p


Both equivalent to ¬p ∨ q


An example:


If function f is “hard” then crypto scheme S is “secure”  
≡ If crypto scheme S is not “secure,” then function f is not 
“hard”


To prove the former, we can instead show how to 
transform any attack on S into an efficient algorithm for f



More Examples

Proposition:  ∀x,y∈Z+  x⋅y > 25 → (x≥6) ∨ (y≥6)


Enough to prove that: ∀x,y∈Z+  (x<6) ∧ (y<6) → x⋅y ≤ 25


Proposition:  “p only if q.”  i.e., if not q, then not p: ¬q → ¬p


Same as p → q


“p if and only if q”: That is, (q → p) ∧ (¬q → ¬p)


Equivalent to (q → p) ∧ (p → q), or p ⟷ q.  

Also, (p → q) ∧ (¬p → ¬q).

Positive integers



Templates
Proof by contradiction as an instance of proving equivalent 
propositions:


p ≡ ¬p → False. To prove p, enough to show that ¬p → False.


Now, to prove ¬p → False, as we saw, we will start by 
assuming ¬p


Can start the proof directly by saying “Suppose for the 
sake of contradiction, ¬p” (instead of saying we shall 
prove ¬p → False)


pn is simply “False.”


E.g., we may have ¬p ⇒ … ⇒ q … ⇒ ¬q ⇒ False


“But that is a contradiction! Hence p holds.”



Example
Claim: There’s a village barber who shaves exactly those in 
the village who don’t shave themselves


Proposition: The claim is false


Proposition, formally: ¬(∃B∀x  ¬shave(x,x) ⟷ shave(B,x))


Suppose for the sake of contradiction,  
∃B ∀x  ¬shave(x,x) ⟷ shave(B,x)


(∃B ∀x  ¬shave(x,x) ⟷ shave(B,x) )  

           ⇒ (∃B ¬shave(B,B) ⟷ shave(B,B) )  

           ⇒ ∃B False  

           ⇒ False, which is a contradiction!



Example
For every pair of distinct primes p,q, logp(q) is irrational


(Will use basic facts about log and primes from arithmetic.)


Suppose for the sake of contradiction that there exists a pair 
of distinct primes (p,q), s.t. logp(q) is rational.


⇒ logp(q)  = a/b for positive integers a,b.  

(Note, since q>1, logp(q) > 0.)


⇒  pa/b = q  ⇒ pa = qb.


But p, q are distinct primes. Thus pa and qb are two distinct 
prime factorisations of the same integer!


Contradicts the Fundamental Theorem of Arithmetic!

Will prove later



Template

To prove ∃x P(x)


Demonstrate a particular value of x s.t. P(x) holds


e.g. to prove ∃x P(x) → Q(x)


find an x s.t. P(x) → Q(x) holds


if you can find an x s.t. P(x) is false, done!


or, you can find an x s.t. Q(x) is true, done!


(May not be easy to show either, but still may be able to 
find an x and argue ¬P(x) ∨ Q(x) )


(May not be able to find one, but still show one exists!)



Question

To prove ¬(∀x P(x)), the most natural/correct approach is to:  
 

A.  prove that ¬P(x) holds for all x 
 

B.  prove that P(x) holds for all x 
 

C.  demonstrate an x s.t. P(x) is false  
 

D.  demonstrate an x s.t. P(x) is true  
 

E.  prove that P(x) or ¬P(x) holds for all x

∃x ¬P(x)
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Templates
To prove ∀x P(x) → Q(x)


Let x be an arbitrary element (in the domain of the 
predicates P and Q)


Now prove P(x) → Q(x)


Assume P(x) holds, i.e., set p0 to be P(x)


Prove Q(x) using a sequence, p0 ⇒ p1 ⇒ … ⇒ pn, where pn 

is Q(x)


Since x is arbitrary, this proof applies to every x. Hence  
∀x P(x) → Q(x)


Caution: You are not proving (∀x P(x)) → (∀x Q(x)). So to prove 
Q(x), may only assume P(x), and not P(x’) for x’ ≠ x.



Some Valid 
Approaches

∀x P(x)


Let x be an arbitrary element  
Show Q(x) → P(x)  
Show Q(x) holds 
Then P(x)    Because, (Q(x) ∧ (Q(x) → P(x))) ≡ P(x) ∧ (…)


∃x ¬Q(x)


Show ∃x Q(x) → P(x)  
Show ∀x ¬P(x)


Or, Show ∀x ¬Q(x) (Much more than needed, but OK)

At this point, we have 

reduced the problem of 
proving P(x) to the 

problem of proving Q(x)

If we demonstrate an 
element x s.t. Q(x)→P(x) 
holds, now enough to 

show that for that x, P(x) 
holds

May or may not be 
possible/true for a given 

problem.



∄x P(x) ∧ Q(x) ≡ ∀x ¬P(x) ∨ ¬Q(x)


Show ∀x ¬Q(x)


Or, show ∀x ¬P(x)


Or, more generally, show ∀x P(x) → ¬Q(x)


∃x P(x)


Show P(0)


¬ ∀x P(x) ≡ ∃x ¬P(x)


Show ¬P(0)
Rewrite

Rewrite

Some Valid 
Approaches

May or may not be 
possible/true for a given 

problem.



Today
Proofs : A style guide


Proofs should be easy to verify. All the cleverness goes into 
finding/writing the proof, not reading/verifying it!


Multiple approaches: 


Today: Direct deduction; Rewriting the proposition, e.g., 
as contrapositive; Proof by contradiction; Proof by giving 
a (counter)example, when applicable.


Next:


Proof by case analysis 


Mathematical induction


