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Today

@ Proofs : A style guide

@ Proofs should be easy fo verify. All the cleverness goes into
finding/writing the proof, not reading/verifying it!

P vs. NP” (informally) :
P = class of problems for which finding a proof is computationally easy.
NP = class of problems for which verifying a proof is computationally easy.
We believe that many problems in NP are not in P
(but we haven't been able to prove it yet!)

@ Multiple approaches: Direct deduction; Rewriting the
proposition, e.g., as contrapositive; Proof by contradiction;
Proof by giving a (counter)example, when applicable.

@ Today: Proof by case analysis; Mathematical induction



Ccases

@ Often it is helpful to break a proposition info various

"cases” and prove them one by one

@ e.g., To prove p — @

®p — Pp1VPpzVp:
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@ Hence p — q
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Cases: Example

@ Proving equivalences of logical formulas
@ Toprove: pv(gan=(pvag)a(pvr)

e vpqreilF} (pv@an)«—({(pvagAalvn)
@ Two cases: p VvV -p

@ Casep: pvigan=T
pvaga(pvn=T

@ Case-p: pvigan=(@Q@ar
pvaga(pvr)=(@Qar)



Cases: Example

a Vabcd € 4+ If a2+b2+c2 =d?2, then d is even iff a,b,c are all

even.

@ Suppose a,b,cd € Z+ s.t. a2+b2+c? = d2. Will show d is even iff
a,b,c are all even.

@ 4 cases based on number of a,b,c which are even.

@ Case 1l: a,b,c all even = d2 = a2+b2+c? even = d even.

@ Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a
be odd and b, ¢ even. i.e.,, a=2x+1, b=2y, c=2z for some Xx,y,z.
Then, d2 = a2+b2+c2 = 2(2x2+2x+2y2+222) + 1 = d2 odd = d odd.

@ Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z.
Then, d2=a2+b2+c2 = 4(x2+x+Yy2+y+42z2) + 2. Contradiction! (why?)

@ Case 4: a,b,c all odd = d2 = a2+b2+c2 = 4w+3 = d odd.




Mathematical Induction
Proof by Programming



T'he Fable of the Proot Deity!

(OK, | made tt up :) )

@ You have been imprisoned in a dungeon. The guard gives you a predicate P
and tells you that the next day you will be asked to produce the proof for

P(n) for some neZ+. If you can, you’ll be let free!

@ You pray to Seshat, the deity of wisdom.

@ You tell her what P is. She thinks for a bit and says,
indeed, Yn€Z+ P(n). But she wouldn’t give you a proof.

@ You plead with her. She relents a bit and tells you.
If you give me the proof for P(k) for any k, and give
me a gold coin, | will give you the proof for P(k+1).

@ You are hopeful, because you have worked out the proof for P(1)
(and you’'re very rich) ...




T'he Fable of the Proot Deity!

(OK, | made tt up :) )

@ After getting out of the dungeon, you have an envelope
with the proof of P(207) with you. You open it.

» The first page is the proof of P(1) you gave.

» The second page has the proof for a Lemma: vk€Z*+ P(k)—P(k+1).

» The third page has:
Since P(1) and, by Lemma, P(1) — P(2), we have P(2).
Since P(2) and, by Lemma, P(2) — P(3), we have P(3).

Since P(206) and, by Lemma, P(206) — P(207), we have P(207).
QED

@ You feel a bit silly for having paid 206 gold coins. But at least, you
learned something... 3 &=



Programming a Proof

@ Let f(n) = 3(1 ton) 12 and g(n) = n(n+1)(2n+1)/6

@ vneZ+, f(n) = g(n)

e f(l) =1, dgl1)=1 ¥
@ f(2)=5 g(2)=5 v
e f(3) =14, g(3) =14 v
@ But we need to check this for all n..

@ To the rescue: mathematical induction

@ No need to explicitly write down such a proof. Enough to prove that
an explicit proof exists!

@ Describe a procedure that can generate the proof for each n



Proof by Induction

@ To prove vneZ+ P(n):

~ ) )
An axiom in
our system

| for 2 \6 First, we _prove and [‘v’ke@ P(k)eP(k+l)]
=

ok The Principle of f/

\N/N\a’rhema’rlcal Induction P(l)}/ PULSER(2)

D =
For any n, we can run this (2); |, D(2) P(3)

procedure to generate a proof = 3
for P(n), and hence for any n, (3) (3) — P(4)

P(n) holds. 3(4)} D(4) — P(5)
P P(5)¢ " 3 P(5) — P(6)

vneZ+ P(n)

A




Proof by Induction

( Induction step }

a To PI"OVQ vneldt P(n):%Base case} Induction hypothesis J

a First, we prove and [VKEE"' P(k)gp(k+1)]

@ Then by (weak) mathematical induction, [vnez+ P(n)w




plq : p divides g
l.e., Ir s.t. q=pr

- Example

a vneN, 3| n3-n

@ Base case: n=0. 3|0.

@ Induction step: For all infegers k20
Induction hypothesis: Suppose true for n=k. i.e., k3-k = 3m
To prove: Then, true for n=k+l. i.e., 3 | (k+1)3-(k+1)

@ (k+1)3 - (k+1) = k3 + 3k2 + 3k +1 -k -1
= (k3 - k) + 3k2+3kK
=3m + 3kZz + 3k ¢

@ The non-inductive proof: n3-n = n(n2-1) = (n-1)n(n+1).
3|In(n+1)(n+2) since one of n, (n+1), (n+2) is = O (mod 3)



Proof by Induction

@ To prove vneZ+ P(n):
@ First, we prove P(1) and vkeZ+ P(k)—P(k+1)
@ Then by (weak) mathematical induction, vneZ+ P(n)

a I

I n disguise Well Ordering Principle

Every non-empty subset of Z+ has a minimum element.

(Can be used instead of Principle of Mathematical Induction) )

|

@ To prove vneZ+ P(n):
@ Prove P(1) and vkeZ+ -P(k+1) — -P(k)
@ For the sake of contr diction, suppose - (vneZ+ P(n) ).
a Let k' be the smallest neZ+ s.t. -P(n). k" # 1 (since P(1)).
a Let k = k'-1. Then, k € Z+ and -P(k+1). Then, -P(k).
a Contradicts the fact that k' is the smallest neZ+ s.t. -P(n).




Tromino Tiling

@ L-trominoes can be used to tile a “punctured” Bj
2nx2n grid (punctured = one cell removed), for
all positive integers n

@ Base case: n=1 EH B: rq H:l

@ Inductive step: For all integers k21 :
Hypothesis: suppose, true for n=k

To prove: then, true for n=k+1

@ Idea: can partition the 2k+1x2k+l punctured

grid into four 2kx2k punctured grids, plus a

tromino. Each of these can be tiled using EEEEEEEN
: : . : EEEEEREN
trominoes (by inductive hypothesis). pERgpElE
HE BN Bl B

@ Actually gives a (recursive) algorithm for tiling



Structured Problems

@ P(n) may refer to an object or structure of “size” n (e.g., a

punctured grid of size 2n x 2n)

@ To prove P(k) — P(k+1)

@ Take the object of size k+l

7

Common mistake:
Going in the opposite direction!

\

Not enough to reason about
(k+1)-sized objects derived
from k-sized objects

)

@ Derive (one or more) objects of size k

@ Appeal to the induction hypothesis P(k), to draw conclusions

about the smaller objects

@ Put them back together info the original object, and draw a
conclusion about the original object, namely, P(k+1)



Strong Induction

[ Induction hypothesis: vngk P(n)

a To prove vneZ+ P(n): we prove (as before) and that
 vkeZ+ (P(1) A P(2) MK))ep(ku) i

Mathematical Induction ~——> P(l)l}./ B1) — P(2)
The fact that for any n, 2 M
we can run this procedure to P )}j P(1) A P(2) P(3)
generate a proof for P(n), and P(3) ’ P(1) A .. A P(3) — P(4)
hence for any n, P(n) holds. 5(4) }’l (1) A . A P(4) — P(5)
/-/ o5 T P() A . A P(5) — P(6)

vneZ+ P(n)} : o ¥

N
Same as weak induction for vn Q(n), where Q(n) ¢ vme[l,n] P(m)
< v




Prime Factorization

Need some
more work to

e \ y ; : show unique
@ Every positive integer n > 2 has a prime factorization = e

i . factorization.
i.e, n = p1-...-pt (for some t21) where all pi are prime
p _prime A plab

@ Base case: n=2. (t=1, p1=2). — pla v plb
@ Induction step: N

(Strong) induction hypothesis: for all n<k, 3py,...,pt, s.t. n= pi-...-p
To prove: 3qi,...,qu (also primes) s.t. k+l= qi-...-qu

@ Case k+1 is prime: then k+l=q; for prime q:
@ Case k+l is not prime: JaeZ+ s.t. 2<a<k and alk+l (def. prime).

@ i.e., 3a,beZ+ s.t. 2<a,b<k and k+l=a.b (def. divides; a22—a.b > b)

@ Now, by (strong) induction hypothesis, both a & b have prime
factorizations: a=p:...ps, b=ri...r+.

@ Then k+1=q:...qy, Where u=s+t, q = pi for i=l fo s and qi = ris, for
1=S+1 o S+T.



Postage Stamps

@ Claim: Every amount of postage that is at least 12 can be made
from T4 and I5 stamps

@ i.e., vneZ+ n212 — 3Ja,beN n=4a+5b

@ Base cases: n=l,..,11 (vacuously true) and n =12 = 4-3 + 5-0, n = 13
=4-2+5'1,n=14=4-1+5:2,n=15=4-0.4+5"3.

@ Induction step: For all integers k216 :
Strong induction hypothesis: Claim holds for all ns.t. 1 < n <Kk
To prove: Holds for n=k

@ k216 — k-4 > 12.
@ So by induction hypothesis, k-4=4a+5b for some a,beN.

@ So k = 4(a+1) + 5b.



Be careful about ranges!

@ Claim: Every non-empty set of integers has either all elements
even or all elements odd. (Of course, false!)

@ “Proof” (bogus): By induction on the size of the set.

Bug: Induc’rlon hypothesis cannot be
bootstrapped from the base case

@ Base case:\ |S|=1. The only elemgnt in € ic
claimed. <[

@ Induction step: For all k >1,.
Induction hypothesis: suppose all non-empty S Wi
either all elements even or all elements odd.

To prove: then, it holds for all S with |S|=k+1.

@ Let S = {a,b} u S, where |S’|=k-1.

@ S’ u {a} has all even or all odd. Say, all even. (The other case is
analogous.) Then S’ is all even, and S’ u {b} is also all even. Thus
S =S’ u {a,b} is all even. QED.



Nim

@ Alice and Bob take turns removing matchsticks from two piles

@ Initially both piles have equal number of matchsticks

@ At every turn, a player must choose one pile and remove one
or more matchsticks from that pile

@ Goal: be the person to remove the last matchstick

@ Claim: In Nim, the second player has a winning strategy

@ (Aside: in every finitely-terminating two player game without
draws, one of the players has a winning strategy)

@ Claim: The following is a winning strategy for the second
player: keep the piles matched at the end of your turn



@ Claim: The following is a winning strategy for the second
player: keep the piles matched at the end of your turn

@ Rephrased: with this strategy for Bob (2nd player), at the end of
each turn, either he has already won, or will win from there

@ Induction variable: n = number of matchsticks on each pile at the
beginning of the furn.

@ Base case: n=l. Alice must remove one. Then Bob wins. v/
@ Induction step: for all integers k21
Induction hypothesis: when starting with n<k, Bob always wins

To prove: when starting with n=k+1, Bob always wins
@ Case 1: Alice removes all k+1 from one pile. Then Bob wins.
@ Case 2: Alice removes j, 1¢j<k from one pile. After Bobs move
k+1l-j left in each pile. By induction hypothesis, Bob will always win
from here.

strong J




