
Proofs, Continued

Euclid (300 BC)



Today
Proofs : A style guide


Proofs should be easy to verify. All the cleverness goes into 
finding/writing the proof, not reading/verifying it!  
 

 

 

 

 

Multiple approaches: Direct deduction; Rewriting the 
proposition, e.g., as contrapositive; Proof by contradiction; 
Proof by giving a (counter)example, when applicable.


Today: Proof by case analysis; Mathematical induction

P vs. NP”   (informally) : 
P = class of problems for which finding a proof is computationally easy.  

NP = class of problems for which verifying a proof is computationally easy.  
We believe that many problems in NP are not in P 

(but we haven’t been able to prove it yet!)



Cases
Often it is helpful to break a proposition into various 
“cases” and prove them one by one


e.g., To prove p → q


p → p1 ∨ p2 ∨ p3


p1 → q


p2 → q


p3 → q


Hence p → q
( (p→r) ∧ (r→q) ) 

                → (p→q)

 

(p1→q) ∧ (p2→q) ∧ (p3→q) 
≡ 

( p1 ∨ p2 ∨ p3 ) → q



Cases: Example

Proving equivalences of logical formulas


To prove:  p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


∀p,q,r ∈ {T,F}   (p ∨ (q ∧ r)) ⟷ ((p ∨ q) ∧ (p ∨ r))


Two cases: p ∨ ¬p


Case p:   p ∨ (q ∧ r) ≡ T  
                (p ∨ q) ∧ (p ∨ r) ≡ T


Case ¬p:   p ∨ (q ∧ r) ≡ (q ∧ r) 
                (p ∨ q) ∧ (p ∨ r) ≡ (q ∧ r)



Cases: Example
∀a,b,c,d ∈ Z+  If a2+b2+c2 = d2, then d is even iff a,b,c are all 

even.


Suppose a,b,c,d ∈ Z+  s.t. a2+b2+c2 = d2. Will show d is even iff 

a,b,c are all even.


4 cases based on number of a,b,c which are even. 


Case 1: a,b,c all even ⇒ d2 = a2+b2+c2 even ⇒ d even.


Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a 
be odd and b, c even. i.e., a=2x+1, b=2y, c=2z for some x,y,z.   
Then, d2 = a2+b2+c2 = 2(2x2+2x+2y2+2z2) + 1 ⇒ d2 odd ⇒ d odd.


Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z. 
Then, d2=a2+b2+c2 = 4(x2+x+y2+y+4z2) + 2. Contradiction! (why?)


Case 4: a,b,c all odd ⇒ d2 = a2+b2+c2 = 4w+3 ⇒ d odd.



Mathematical Induction 
Proof by Programming



You have been imprisoned in a dungeon. The guard gives you a predicate P 
and tells you that the next day you will be asked to produce the proof for 

P(n) for some n∈Z+. If you can, you’ll be let free! 

You pray to Seshat, the deity of wisdom.  

You tell her what P is. She thinks for a bit and says,  

indeed, ∀n∈Z+ P(n). But she wouldn’t give you a proof. 

You plead with her. She relents a bit and tells you. 
If you give me the proof for P(k) for any k, and give 
me a gold coin, I will give you the proof for P(k+1). 

You are hopeful, because you have worked out the proof for P(1)  
(and you’re very rich) …

The Fable of  the Proof  Deity! 
(OK, I made it up :) )



After getting out of the dungeon, you have an envelope 
with the proof of P(207) with you. You open it. 

The first page is the proof of P(1) you gave.  

The second page has the proof for a Lemma: ∀k∈Z+  P(k)→P(k+1). 

The third page has:  
Since P(1) and, by Lemma, P(1) → P(2), we have P(2). 
Since P(2) and, by Lemma, P(2) → P(3), we have P(3). 
   : 
Since P(206) and, by Lemma, P(206) → P(207),  we have P(207). 
                                                                                              QED 

You feel a bit silly for having paid 206 gold coins. But at least, you  
learned something…

The Fable of  the Proof  Deity! 
(OK, I made it up :) )



Let f(n) = ∑(i=1 to n) i2 and g(n) = n(n+1)(2n+1)/6


∀n∈Z+,  f(n) = g(n)


f(1)  = 1,   g(1) = 1   ✔ 

f(2) = 5,   g(2) = 5  ✔ 

f(3) = 14,  g(3) = 14 ✔ 

But we need to check this for all n...


To the rescue: mathematical induction


No need to explicitly write down such a proof. Enough to prove that 
an explicit proof exists!


Describe a procedure that can generate the proof for each n

Programming a Proof



The Principle of

Mathematical Induction


For any n, we can run this 
procedure to generate a proof 
for P(n), and hence for any n, 

P(n) holds.

Proof by Induction

To prove ∀n∈Z+  P(n):


First, we prove P(1) and ∀k∈Z+  P(k)→P(k+1)

P(1) P(1) → P(2)

P(2) → P(3)

P(3) → P(4)

P(4) → P(5)

P(5) → P(6)

:

P(2)

P(3)

P(4)

P(5)

:
∀n∈Z+  P(n)

∧

∧

∧

∧

∧

Weak

An axiom in 
our system 

for Z+



Proof by Induction

Base case Induction hypothesis

Induction step

To prove ∀n∈Z+  P(n):


First, we prove P(1) and ∀k∈Z+  P(k)→P(k+1)


Then by (weak) mathematical induction, ∀n∈Z+  P(n) 



Example
∀n∈N, 3 | n3 - n


Base case: n=0. 3|0.


Induction step: For all integers k≥0  
Induction hypothesis: Suppose true for n=k. i.e., k3-k = 3m  

To prove: Then, true for n=k+1. i.e., 3 | (k+1)3-(k+1)


(k+1)3 - (k+1) = k3 + 3k2 + 3k + 1 - k - 1 
                = (k3 - k) + 3k2+3k  
                = 3m + 3k2 + 3k  ✔


The non-inductive proof: n3-n = n(n2-1) = (n-1)n(n+1).  
3|n(n+1)(n+2) since one of n, (n+1), (n+2) is ≡ 0 (mod 3)  

p|q : p divides q  
i.e., ∃r s.t. q=pr



Proof by Induction
To prove ∀n∈Z+  P(n):


First, we prove P(1) and ∀k∈Z+  P(k)→P(k+1)


Then by (weak) mathematical induction, ∀n∈Z+  P(n) 

To prove ∀n∈Z+  P(n):


Prove P(1) and ∀k∈Z+  ¬P(k+1) → ¬P(k)


For the sake of contradiction, suppose ¬ (∀n∈Z+ P(n) ). 


Let k’ be the smallest n∈Z+ s.t. ¬P(n). k’ ≠ 1 (since P(1)).


Let k = k’-1. Then, k ∈ Z+ and ¬P(k+1). Then, ¬P(k).


Contradicts the fact that k’ is the smallest n∈Z+ s.t. ¬P(n).

In disguise Well Ordering Principle 

Every non-empty subset of Z+ has a minimum element.

(Can be used instead of Principle of Mathematical Induction)



L-trominoes can be used to tile a “punctured” 
2n×2n grid (punctured = one cell removed), for 
all positive integers n


Base case: n=1 


Inductive step: For all integers k≥1 :  
  Hypothesis: suppose, true for n=k  
  To prove: then, true for n=k+1


Idea: can partition the 2k+1×2k+1 punctured 

grid into four 2k×2k punctured grids, plus a 
tromino. Each of these can be tiled using 
trominoes (by inductive hypothesis).


Actually gives a (recursive) algorithm for tiling

Tromino Tiling



Structured Problems
P(n) may refer to an object or structure of “size” n (e.g., a 
punctured grid of size 2n × 2n)


To prove P(k) → P(k+1)


Take the object of size k+1


Derive (one or more) objects of size k


Appeal to the induction hypothesis P(k), to draw conclusions 
about the smaller objects


Put them back together into the original object, and draw a 
conclusion about the original object, namely, P(k+1)

Common mistake:

Going in the opposite direction! 
Not enough to reason about 
(k+1)-sized objects derived 

from k-sized objects



Strong Induction

P(1) P(1) → P(2)

P(1) ∧ P(2) → P(3)

P(1) ∧ .. ∧ P(3) → P(4)

P(1) ∧ .. ∧ P(4) → P(5)

P(1) ∧ .. ∧ P(5) → P(6)

:

P(2)

P(3)

P(4)

P(5)

:

∧

∧

∧

∧

∧

Mathematical Induction

The fact that for any n,  

we can run this procedure to 
generate a proof for P(n), and 
hence for any n, P(n) holds.

To prove ∀n∈Z+  P(n): we prove P(1) (as before) and that  

 ∀k∈Z+  (P(1) ∧ P(2) ∧ ... ∧ P(k))→P(k+1)

Same as weak induction for ∀n Q(n), where Q(n) ≜ ∀m∈[1,n]  P(m)

∀n∈Z+  P(n)

Induction hypothesis: ∀n≤k P(n)



Prime Factorization
Every positive integer n ≥ 2 has a prime factorization  
i.e, n = p1⋅...⋅pt (for some t≥1) where all pi are prime


Base case: n=2. (t=1, p1=2).

Induction step:  
  (Strong) induction hypothesis: for all n≤k, ∃p1,...,pt, s.t. n= p1⋅...⋅pt  

  To prove: ∃q1,...,qu (also primes) s.t. k+1= q1⋅...⋅qu


Case k+1 is prime: then k+1=q1 for prime q1


Case k+1 is not prime: ∃a∈Z+ s.t. 2≤a≤k and a|k+1 (def. prime). 


i.e., ∃a,b∈Z+ s.t. 2≤a,b≤k and k+1=a.b (def. divides; a≥2→a.b > b)


Now, by (strong) induction hypothesis, both a & b have prime 
factorizations: a=p1...ps, b=r1...rt. 

Then k+1=q1...qu, where u=s+t, qi = pi for i=1 to s and qi = ri-s, for 
i=s+1 to s+t.

Need some 
more work to 
show unique 
factorization. 

 

p prime ∧ p|ab  
→ p|a ∨ p|b 



Postage Stamps
Claim: Every amount of postage that is at least ₹12 can be made 

from ₹4 and ₹5 stamps


i.e., ∀n∈Z+  n≥12 → ∃a,b∈N  n=4a+5b


Base cases: n=1,..,11 (vacuously true) and n = 12 = 4⋅3 + 5⋅0, n = 13 
= 4⋅2 + 5⋅1, n = 14 = 4⋅1 + 5⋅2, n = 15 = 4⋅0 + 5⋅3.


Induction step: For all integers k≥16 :  
   Strong induction hypothesis:  Claim holds for all n s.t. 1 ≤ n < k  
   To prove:  Holds for n=k


k≥16 → k-4 ≥ 12. 

So by induction hypothesis, k-4=4a+5b for some a,b∈N.


So k = 4(a+1) + 5b.



Claim: Every non-empty set of integers has either all elements 
even or all elements odd. (Of course, false!)


“Proof” (bogus): By induction on the size of the set.


Base case: |S|=1. The only element in S is either even or odd, as 
claimed.


Induction step: For all k > 1,  
Induction hypothesis: suppose all non-empty S with |S| = k, has 
either all elements even or all elements odd. 
To prove: then, it holds for all S with |S|=k+1.


Let S = {a,b} ∪ S’, where |S’|=k-1.


S’ ∪ {a} has all even or all odd. Say, all even. (The other case is 
analogous.) Then S’ is all even, and S’ ∪ {b} is also all even. Thus 
S = S’ ∪ {a,b} is all even. QED.

Be careful about ranges!

Bug: Induction hypothesis cannot be 
bootstrapped from the base case



Nim

Alice and Bob take turns removing matchsticks from two piles

Initially both piles have equal number of matchsticks

At every turn, a player must choose one pile and remove one 
or more matchsticks from that pile

Goal: be the person to remove the last matchstick


Claim: In Nim, the second player has a winning strategy


(Aside: in every finitely-terminating two player game without 
draws, one of the players has a winning strategy)

Claim: The following is a winning strategy for the second 
player: keep the piles matched at the end of your turn



Nim

Rephrased: with this strategy for Bob (2nd player), at the end of 
each turn, either he has already won, or will win from there

Induction variable: n = number of matchsticks on each pile at the 
beginning of the turn. 

Base case: n=1. Alice must remove one. Then Bob wins. ✔ 

Induction step: for all integers k≥1  
  Induction hypothesis: when starting with n≤k, Bob always wins  
  To prove: when starting with n=k+1, Bob always wins


Case 1: Alice removes all k+1 from one pile. Then Bob wins.

Case 2: Alice removes j, 1≤j≤k from one pile. After Bob’s move  
k+1-j left in each pile. By induction hypothesis, Bob will always win 
from here.

Claim: The following is a winning strategy for the second 
player: keep the piles matched at the end of your turn

strong


