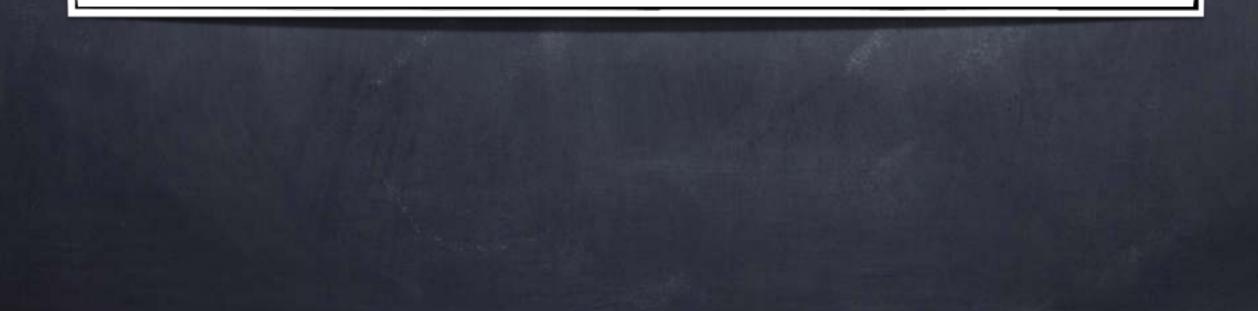


Proofs, Continued



Today

Proofs : A style guide

Proofs should be easy to verify. All the cleverness goes into finding/writing the proof, not reading/verifying it!

P vs. NP" (informally):
P = class of problems for which <u>finding</u> a proof is computationally easy.
NP = class of problems for which <u>verifying</u> a proof is computationally easy.
We believe that many problems in NP are not in P (but we haven't been able to prove it yet!)

 Multiple approaches: Direct deduction; Rewriting the proposition, e.g., as contrapositive; Proof by contradiction; Proof by giving a (counter)example, when applicable.

Today: Proof by case analysis; Mathematical induction

Cases

Often it is helpful to break a proposition into various "cases" and prove them one by one

ø e.g., To prove p
$$ightarrow$$
 q

- ${\it @} \ p_1 \rightarrow q$
- ${\it @ } p_2 \rightarrow q$

 $o p_3 \rightarrow q$

$$\begin{cases} (p_1 \rightarrow q) \land (p_2 \rightarrow q) \land (p_3 \rightarrow q) \\ & \equiv \\ (p_1 \lor p_2 \lor p_3) \rightarrow q \end{cases}$$

 \emptyset Hence $p \rightarrow q$

((p
$$\rightarrow$$
r) \land (r \rightarrow q))
 \rightarrow (p \rightarrow q)

Cases: Example

- Proving equivalences of logical formulas
- To prove: $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Case p: p ∨ (q ∧ r) = T (p ∨ q) ∧ (p ∨ r) = T
 Case ¬p: p ∨ (q ∧ r) = (q ∧ r) (p ∨ q) ∧ (p ∨ r) = (q ∧ r)

Cases: Example

- Suppose a,b,c,d ∈ Z+ s.t. a²+b²+c² = d². Will show d is even iff a,b,c are all even.
- 4 cases based on number of a,b,c which are even.
- Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a be odd and b, c even. i.e., a=2x+1, b=2y, c=2z for some x,y,z. Then, $d^2 = a^2+b^2+c^2 = 2(2x^2+2x+2y^2+2z^2) + 1 \Rightarrow d^2$ odd \Rightarrow d odd.
- Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z. Then, d²=a²+b²+c² = 4(x²+x+y²+y+4z²) + 2. Contradiction! (why?)

Mathematical Induction Proof by Programming

The Fable of the Proof Deity! (OK, 1 made it up:))

You have been imprisoned in a dungeon. The guard gives you a predicate P and tells you that the next day you will be asked to produce the proof for P(n) for some n∈Z+. If you can, you'll be let free!

You pray to Seshat, the deity of wisdom.

- You tell her what P is. She thinks for a bit and says, indeed, $\forall n \in \mathbb{Z}^+ P(n)$. But she wouldn't give you a proof.
- You plead with her. She relents a bit and tells you.
 If you give me the proof for P(k) for any k, and give me a gold coin, I will give you the proof for P(k+1).
- You are hopeful, because you have worked out the proof for P(1) (and you're very rich) ...

The Fable of the Proof Deity! (OK, 1 made it up:)

After getting out of the dungeon, you have an envelope with the proof of P(207) with you. You open it.

- The first page is the proof of P(1) you gave.
- The second page has the proof for a Lemma: $\forall k \in \mathbb{Z}^+ P(k) \rightarrow P(k+1)$.
- The third page has: Since P(1) and, by Lemma, P(1) \rightarrow P(2), we have P(2). Since P(2) and, by Lemma, P(2) \rightarrow P(3), we have P(3).

Since P(206) and, by Lemma, P(206) \rightarrow P(207), we have P(207). QED

You feel a bit silly for having paid 206 gold coins. But at least, you learned something...

Programming a Proof

Let $f(n) = \sum_{i=1 \text{ to } n} i^2$ and g(n) = n(n+1)(2n+1)/6

 $\forall n \in \mathbb{Z}^+, f(n) = g(n)$

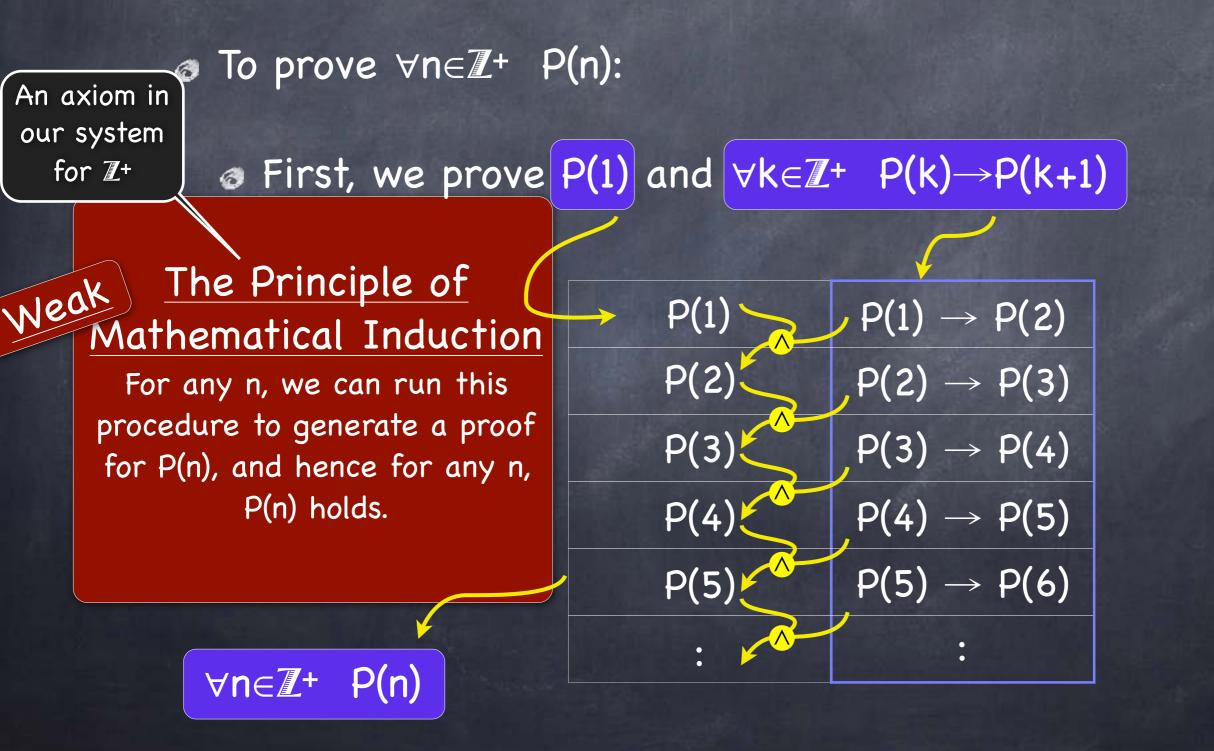
If f(1) = 1, g(1) = 1If f(2) = 5, g(2) = 5If f(3) = 14, g(3) = 14If f(3) = 14, g(3) = 14

To the rescue: mathematical induction

No need to explicitly write down such a proof. Enough to prove that an explicit proof exists!

Describe a procedure that can generate the proof for each n

Proof by Induction



Proof by Induction

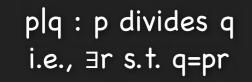
Induction step

To prove ∀n∈ℤ+ P(n): Base case

Induction hypothesis

First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ P(k)→P(k+1)

Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)



 $\forall n \in \mathbb{N}, 3 \mid n^3 - n$

Example

Base case: n=0. 3|0.

Induction step: For all integers k≥0 <u>Induction hypothesis</u>: Suppose true for n=k. i.e., k³-k = 3m <u>To prove</u>: Then, true for n=k+1. i.e., 3 | (k+1)³-(k+1)

The non-inductive proof: $n^3-n = n(n^2-1) = (n-1)n(n+1)$. 3|n(n+1)(n+2) since one of n, (n+1), (n+2) is = 0 (mod 3)

Proof by Induction

To prove ∀n∈ℤ+ P(n):
First, we prove P(1) and ∀k∈ℤ+ P(k)→P(k+1)
Then by (weak) mathematical induction, ∀n∈ℤ+ P(n)

In disguise

Well Ordering Principle Every non-empty subset of ℤ+ has a minimum element. (Can be used instead of Principle of Mathematical Induction)

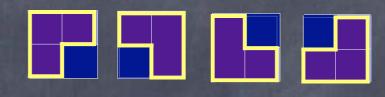
- To prove $\forall n \in \mathbb{Z}^+$ P(n):
 - Orange Prove P(1) and $\forall k \in \mathbb{Z}^+$ ¬P(k+1) → ¬P(k)

 - ⊘ Contradicts the fact that k' is the smallest $n \in \mathbb{Z}^+$ s.t. ¬P(n).

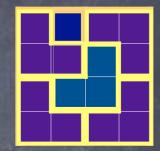
Tromino Tiling

L-trominoes can be used to tile a "punctured"
 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

Base case: n=1

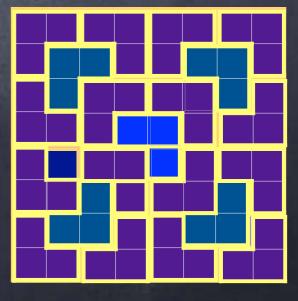


 Inductive step: For all integers k≥1 : <u>Hypothesis</u>: suppose, true for n=k <u>To prove</u>: then, true for n=k+1



Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

Actually gives a (recursive) algorithm for tiling



Structured Problems

P(n) may refer to an object or structure of "size" n (e.g., a punctured grid of size $2^n \times 2^n$)
Common mistake:

- To prove P(k) → P(k+1)
 - Take the object of size k+1

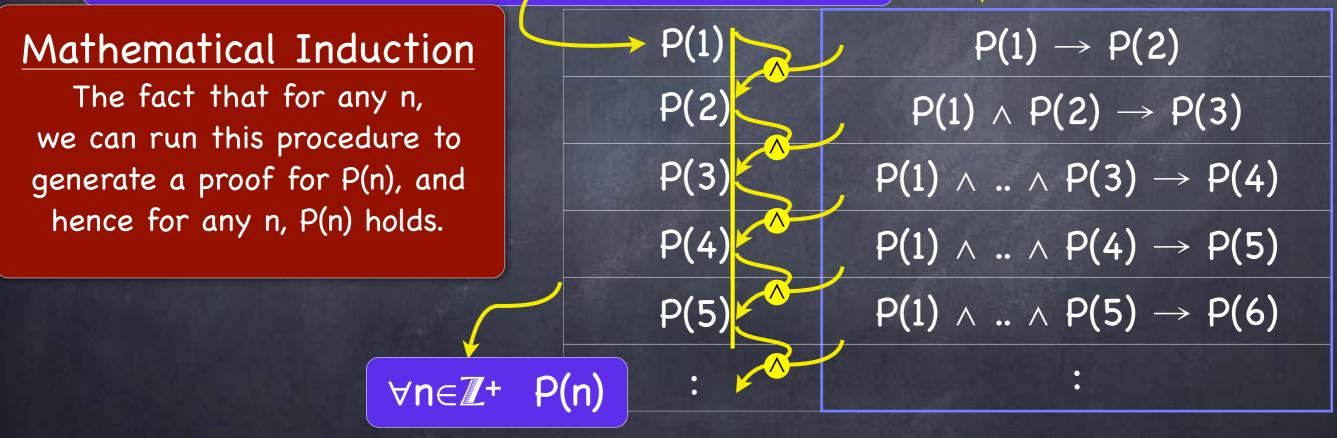
Common mistake: Going in the opposite direction! Not enough to reason about (k+1)-sized objects derived from k-sized objects

- Derive (one or more) objects of size k
- Appeal to the induction hypothesis P(k), to draw conclusions about the smaller objects
- Out them back together into the original object, and draw a conclusion about the original object, namely, P(k+1)

Strong Induction

Induction hypothesis: $\forall n \leq k P(n)$

To prove $\forall n \in \mathbb{Z}^+$ P(n): we prove P(1) (as before) and that $\forall k \in \mathbb{Z}^+$ (P(1) \land P(2) $\land \dots \land$ P(k)) \rightarrow P(k+1)



Same as weak induction for $\forall n \ Q(n)$, where $Q(n) \triangleq \forall m \in [1,n] P(m)$

Prime Factorization

Severy positive integer n ≥ 2 has a prime factorization i.e, n = $p_1 \cdot ... \cdot p_t$ (for some t≥1) where all p_i are prime

Induction step:

(Strong) induction hypothesis: for all n≤k, ∃p1,...,p+, s.t. n= p1 · ... · p+ To prove: ∃q1,...,qu (also primes) s.t. k+1= q1 · ... · qu

ø i.e., ∃a,b∈ℤ⁺ s.t. 2≤a,b≤k and k+1=a.b (def. divides; a≥2→a.b > b)

- Now, by (strong) induction hypothesis, both a & b have prime factorizations: a=p1...ps, b=r1...rt.
- Then k+1=q1...qu, where u=s+t, qi = pi for i=1 to s and qi = ri-s, for i=s+1 to s+t.

Need some more work to show <u>unique</u> factorization.

 $\frac{p \text{ prime } \land p|ab}{\rightarrow p|a \lor p|b}$

Postage Stamps

- Icaim: Every amount of postage that is at least ₹12 can be made from ₹4 and ₹5 stamps
 - ø i.e., $\forall n \in \mathbb{Z}^+$ n≥12 → ∃a,b∈ℕ n=4a+5b
- Base cases: n=1,...,11 (vacuously true) and n = 12 = 4 · 3 + 5 · 0, n = 13 = 4 · 2 + 5 · 1, n = 14 = 4 · 1 + 5 · 2, n = 15 = 4 · 0 + 5 · 3.

Induction step: For all integers k≥16 :
 Strong induction hypothesis: Claim holds for all n s.t. 1 ≤ n < k
 To prove: Holds for n=k

k≥16 → k-4 ≥ 12.
So by induction hypothesis, k-4=4a+5b for some a,b∈N.
So k = 4(a+1) + 5b.

Be careful about ranges!

Claim: Every non-empty set of integers has either all elements even or all elements odd. (Of course, false!)

- Proof" (bogus): By induction on the size of the set.
- Base case: |S|=1. The only element in S is either even or odd as claimed.
 Bug: Induction hypothesis cannot be bootstrapped from the base case

Induction step: For all k > 1, <u>Induction hypothesis</u>: suppose all non-empty S with |S| = k, has either all elements even or all elements odd. <u>To prove</u>: then, it holds for all S with |S|=k+1.

S' \cup {a} has all even or all odd. Say, all even. (The other case is analogous.) Then S' is all even, and S' \cup {b} is also all even. Thus S = S' \cup {a,b} is all even. QED.

Nim

Alice and Bob take turns removing matchsticks from two piles
Initially both piles have equal number of matchsticks
At every turn, a player must choose one pile and remove <u>one</u> <u>or more</u> matchsticks from that pile
Goal: be the person to remove the last matchstick

Claim: In Nim, the second player has a winning strategy

 (Aside: in <u>every</u> finitely-terminating two player game without draws, one of the players has a winning strategy)

Claim: The following is a winning strategy for the second player: keep the piles matched at the end of your turn

Nim

- Claim: The following is a winning strategy for the second player: keep the piles matched at the end of your turn
- Rephrased: with this strategy for Bob (2nd player), at the end of each turn, either he has already won, or will win from there
- Induction variable: n = number of matchsticks on each pile at the beginning of the turn.
- Base case: n=1. Alice must remove one. Then Bob wins.
 ✓

strong

Induction step: for all integers k≥1 <u>Induction hypothesis</u>: when starting with n≤k, Bob always wins <u>To prove</u>: when starting with n=k+1, Bob always wins
Case 1: Alice removes all k+1 from one pile. Then Bob wins.
Case 2: Alice removes j, 1≤j≤k from one pile. After Bob's move k+1-j left in each pile. By induction hypothesis, Bob will always win from here.