

Numb3rs

Lecture 4

The Skippy Clock

Has 13 hours on its dial!
Needle moves two hours at a time
Which all numbers will the needle reach?
Reaches all of them!

Because it reaches 1!

Integers: Basics

Z : set of all integers { ..., -2, -1, 0, 1, 2, ... }
Operations addition, subtraction and multiplication (and their various properties)
Definition: For a,b∈Z, alb (a divides b) if ∃q∈Z b = qa
a|b = b is a multiple of a = a is a divisor of b
Multiples of a : { ..., -2a, -a, 0, a, 2a, ... }
Divisors of b: all a such that a|b
[a.k.a. factors]

Question

Consider the following two statements:
(I) ∀ a∈Z, a | 0
(II) ∀ b∈Z, -1 | b

0 = 0.a b = (-b).(-1)

A. One of them is undefined
B. (I) is true and (II) is false
C. (II) is true and (I) is false
D. Both are true
E. Both are false

Integers: Ba

 \Rightarrow bc = q'a, where q'=qc

Oreposition: \forall a,b,c∈ \mathbb{I} if a|b, then a|bc
 if a|bc
 if a|b, then a|bc
 if a|b

b = qa & c = q'a \Rightarrow b+c = q"a, where q"=q+q'

Ore Proposition: \forall a,b,c∈ℤ if a|b and a|c, then a|(b+c)

b = qa & c = q'b $\Rightarrow c = q''a, where q''=qq'$

Proposition: \forall a,b,c∈ \mathbb{Z} if a|b and b|c, then a|c

bc = qac & c≠0 ⇒ b = qa

Proposition: ∀ a,b,c∈ℤ if ac|bc and c≠0, then a|b
b = qa & b≠0 ⇒ |b| = |q| · |a| where |q| ≥ 1
⇒ |b| = |a| + (|q|-1) · |a| ≥ |a|

@ Proposition: $\forall a,b \in \mathbb{Z}$ if a b and b≠0, then |a| ≤ |b|

Division

For any two integers a and b, $a \neq 0$, there is a unique quotient q and remainder r (integers), such that $b = q \cdot a + r$, $0 \leq r < |a|$

Proof of existence

Here, case <u>r>0.</u> <u>If r=0,</u>

We shall prove it for all non-negative b and positive a. Then, the other cases can be proven as follows: → a>0, b<0: b = -(-b) = -(q·a+r) = -(q+1)a + (a-r), and 0 ≤ a-r < a Fix any a>0. We use strong induction on b. • Base cases: $b \in [0,a)$. Then let q=0 and r=b : b = 0.a + b. • Induction step: We shall prove that for all $k \ge a$, (induction hypothesis): if $\forall b \in \mathbb{Z}^+$ s.t. b<k, $\exists q, r s.t b = qa + r \& 0 \leq r \leq a$ (to prove): then $\exists q^*, r^*$ s.t. $k = q^* \cdot a + r^* \& 0 \leq r^* \leq a$. Consider k'=k-a. 0≤k'<k. By ind. hyp. k'=q'a+r'. Let q*=q'+1, r*=r'. □
</p>

Division

For any two integers a and b, $a \neq 0$, there is a <u>unique</u> quotient q and remainder r (integers), such that $b = q \cdot a + r$, $0 \le r < |a|$

Proof of existence

Also known as "Division Algorithm" (when you unroll the inductive argument, you get a (naïve) algorithm)

Proof of uniqueness:

O Claim: if b = q₁ · a + r₁ = q₂ · a + r₂, where 0 ≤ r₁, r₂ < |a|, then q₁=q₂ and r₁=r₂

• Suppose, $q_1 \cdot a + r_1 = q_2 \cdot a + r_2$. Then $(r_1 - r_2) = (q_2 - q_1)a$. i.e., $a|(r_1 - r_2)$.

W.l.o.g, r₁ ≥ r₂. So, 0 ≤ (r₁-r₂) < |a|. Now, the only multiple of a in that range is 0. So r₁ = r₂. Then (q₁-q₂)a = 0. Since a≠0, q₁=q₂.

Division

For any two integers a and b, $a \neq 0$, there is a <u>unique</u> quotient q and remainder r (integers), such that $b = q \cdot a + r$, $0 \le r < |a|$

Common Factors

<u>Common Divisor</u>: c is a common divisor of integers a and b if c|a and c|b. [a.k.a. common factor]

Greatest Common Divisor (for (a,b)≠(0,0)) gcd(a,b) = largest among common divisors of a and b

Well-defined: 1 is always a common factor. And, no common factor is larger than min(|a|,|b|) (unless a=b=0). So gcd(a,b) is an integer in the range [1, min(|a|,|b|)].

⊘ e.g. Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }. Divisors(18) = { ±1, ±2, ±3, ±6, ±9, ±18 }. Common-divisors(12,18) = { ±1, ±2, ±3, ±6 }. gcd(12,18) = 6
⊘ e.g. Divisors(0) = ℤ. ∀x≠0 gcd(x,0) = |x|. Also, ∀x,a ∈ ℤ, |x| ∈ Divisors(ax). If x≠0, gcd(x,ax)=|x|.

GCD as Tiling

[Here all numbers are positive integers]
 d is a common factor of a & b, iff a d x d square tile can be used to perfectly tile an a x b rectangle

Common Factors

<u>Common Divisor</u>: c is a common divisor of integers a and b if c|a and c|b. [a.k.a. common factor]

Greatest Common Divisor (for (a,b)≠(0,0)) gcd(a,b) = largest among common divisors of a and b

Hence, $\forall a, b, n \in \mathbb{Z}$, gcd(a, b) = gcd(a, b+na)

In particular, $\forall a, b \in \mathbb{Z}$, gcd(a, b) = gcd(a, r), where b = aq+r and $0 \leq r < a$

gcd(6,16) = gcd(6,10)

The Hoppy Bunny

A bunny is sitting on an infinite number line, at position O

The bunny has two hops — of lengths a and b, where a,b ∈ Z
Can hop to left or right (irrespective of the sign of a,b)
What all points can the bunny reach?
After u a-hops and v b-hops (u, v could be negative, indicating direction opposite a or b's sign), bunny is at a · u + b · v

and the second sec

Sor any a, b ∈ Z, let L(a,b) be the set of all integer combination of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }

The One Dimensional Lattice The set of all integer combination f(a,b) be the set of all integer combination of a, b. i.e., $L(a,b) = \{au+bv \mid u,v \in \mathbb{Z}\}$ • Claim: L(a,b) consists of exactly all the multiples of gcd(a,b) Proof: Note that gcd(a,b) divides every element in L(a,b). i.e., every element in L(a,b) is a multiple of qcd(a,b). We shall prove below that $gcd(a,b) \in L(a,b)$, so that all its multiples are also in L(a,b) (L(a,b) being closed under multiplication by integers). • By the well-ordering principle, let d be the smallest element in L+(a,b) \triangleq L(a,b) $\cap \mathbb{Z}^+$.

Let d=au+bv. Let a=dq+r, where O≤r<d. So, r=a-(au+bv)q ∈ L(a,b). Since r<d, we require r∉ L+(a,b). So r=0. i.e., d|a. Similarly, d|b. That is, d is a common divisor. So, d ≤ gcd(a,b).
But d∈L(a,b) ⇒ gcd(a,b)|d ⇒ gcd(a,b)≤d. So gcd(a,b) = d ∈ L(a,b)

Primes

Definition: p∈ℤ is said to be a prime number if p ≥ 2 and the only positive factors of p are 1 and p itself
 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ...

Unique Factorisation (Fundamental Theorem of Arithmetic): $\forall a \in \mathbb{Z}$, if $a \ge 2$ then $\exists ! (p_1, ..., p_t, d_1, ..., d_t)$ s.t.

 $p_1 < ... < p_t$ primes, $d_1,...,d_t \in \mathbb{Z}^+$, and $a = p_1^{d_1} p_2^{d_2} ... p_t^{d_t}$

Recall: We already saw that prime factorisation exists (using strong induction)

Will prove uniqueness now

Primes

• Definition: $p \in \mathbb{Z}$ is said to be a prime number if $p \ge 2$ and the only positive factors of p are 1 and p itself

Euclid's Lemma

 $\forall a, b, p \in \mathbb{Z} \text{ s.t. } p \text{ is prime } (p \mid ab) \rightarrow (p \mid a \lor p \mid b)$

Since the only positive factors of p are 1, p, we have gcd(a,p) = 1 or gcd(a,p) = p.

If gcd(a,p) = p, then p|a ✓

If gcd(a,p) = 1, ∃u,v s.t. 1 = au+pv ⇒ b = bau + bpv ⇒b∈L(ab,p)
But plab and plp. So plb.

Primes

• Definition: $p \in \mathbb{Z}$ is said to be a prime number if $p \ge 2$ and the only positive factors of p are 1 and p itself

<u>Euclid's Lemma</u>

 $\forall a, b, p \in \mathbb{Z} \text{ s.t. } p \text{ is prime } (p \mid ab) \rightarrow (p \mid a \lor p \mid b)$

 Generalisation of Euclid's Lemma (Prove by induction): ∀ $a_1,..., a_n, p \in \mathbb{Z}$ s.t. p is prime, (p | $a_1 \cdots a_n$) → ∃ i, p| a_i

Uniqueness of prime factorisation: Suppose z is the smallest positive integer with two distinct prime factorisations as z = p₁···p_m = q₁···q_n. max{p₁,...,p_m} ≠ max{q₁,...,q_n} (Why?). So w.l.o.g., p_m > q_i, i=1 to n. Now, p_m | q₁···q_n ⇒ p_m | q_i for some i (by Lemma). This contradicts p_m > q_i.