Numb3rs

Lecture 4




The Skippy Clock

@ Has 13 hours on its dial!
® Needle moves two hours at a time

@ Which all numbers will the needle
reach?

@ Reaches all of them!

@ Because it reaches 1!



Integers: Basics

s 4 : set of all integers { ..., -2, -1, 0, 1, 2, ... }

@ Operations addition, subtraction and multiplication (and
their various properties)

» Definition: For a,beZ, alb (a divides b) if 3geZ b = qa

@alb = b is a multiple of a = a is a divisor of b

@ Multiples of a : { ..., -2q, -a, 0, a, 2q, .. }

@ Divisors of b: all a such that alb
[ a.k.a. factors ]



Question

@ Consider the following two statements:
(I) VacZ,a |l O

(II) v beZ, -1 | b

A. One of them is undefined
B. (I) is true and (II) is f
C. (II) is true and (I) is false
D. Both are true
E. Both are false




@ Proposition:

@ Proposition:

@ Proposition:

@ Proposition:

@ Proposition:

Integers: Ba

b =qa
= bc = q'a, where q'=qc

v a,b,ceZ if alb, then albc

b=qa&c=qa
= b+c = q“a, where q"=q+q’

Vv a,b,ceZ if alb and alc, then al(b+c)
b=qa&c=qb
= ¢ =q a, where q'=qq’

v a,b,ceZ if alb and blc, then alc
bc = qac & c#0

= b = qa

vV a,b,ceZ if aclbc and c#0, then alb
b = qa & b#0 = |b| = [q|-|la|l where Iq| > 1

= |bl = lal + (Igl-1)-lal > |al
v a,beZ if alb and b#0, then |al < |b]




Division

For any two integers a and b, a#0, there is a unique

quotient q and remainder r (integers), such that
b=qa+r, 0z<r<ld

@ Proof of existence

Here,
case
r>0.

If r=0,

]

b = tqa

 We shall prove it for all non-negative b and positive a. Then, the

other cases can be proven as follows:

—a a>0, b<0: b = -(-b) = -(q-a+r) = -(g+1)a + (a-r), and O < a-r<a
@ a<0, b>0: b = q-(-a)+r = -qa + r, and 0 < r < la|

— 0 a<0, b<0: b = -(-b) = -(q-(-a)+r) = (gq+1)a + (-a-r), and O < -a-r < |a|

@ Fix any a>0. We use strong induction on b.
@ Base cases: b € [0,a). Then let g=0 and r=b : b = 0.a + b.

@ Induction step: We shall prove that for all k 2 a,

(induction hypothesis): if vbeZ+* s.t. b<k, 3q,r s.t b=qa+r & 0 < r < a
(to prove): then 3g*r* s.t. k =q*-a +r* & 0 <r* <a.

@ Consider k'=k-a. O<k’<k. By ind. hyp. k'=q'a+r’. Let q*=q'+1, r*=r'. O



Division
For any two integers a and b, a#0, there is a unique

quotient q and remainder r (integers), such that
b=qa+r, 0z<r<ld

@ Proof of existence
@ Also known as “Division Algorithm” (when you unroll the inductive
argument, you get a (naive) algorithm)

@ Proof of uniqueness:

@ Claim: if b = qira + ri=gz2-a + rz, where O < r,rz < lal,
then qi=q2 and n=r>

@ Suppose, qi-a + i = gz2-a + rz. Then (ri-r2) = (qz2-qi)a. i.e., al(ri-r2).
@ W.lo.g, 11 2 rz2. So, 0 < (ri-r2) < lal. Now, the only multiple of a in
that range is 0. So r; = ra. Then (qi-gz2)a = O. Since a#0, qi=qa.



% Division
For any two integers a and b, a#0, there is a unique

quotient q and remainder r (integers), such that
b=qa+r, 0<r<ld

1 7 | 8 9710 | 11" T2S boll

g=1, r=4




Common Factors

@ Common Divisor: ¢ is a common divisor of integers a and b
if cla and c|b. [a.k.a. common factor]

@ Greatest Common Divisor ( for (a,b)#(0,0) )
gcd(a,b) = largest among common divisors of a and b

@ Well-defined: 1 is always a common factor. And, no common
factor is larger than min(lal,Ibl) (unless a=b=0). So gcd(a,b) is an
integer in the range [1, min(lal,|bl)].

@ e.qg. Divisors(12) = { +1, £2, 3, 14, 16, 12 }.

Divisors(18) = §{ 1, £2, +3, +6, 19, +18 }.
Common-divisors(12,18) = { +1, +2, +3, +6 }. gcd(12,18) = 6

@ e.g. Divisors(0) = Z. vx#0 gcd(x,0) = |xl.

Also, vx,a € Z, x| € Divisors(ax). If x#0, gcd(x,ax)=Ix|.



4 z

GCD as Tiling

[Here all numbers are positive integers]
@d is a common factor of a & b, iff a d xd square tile can be
used to perfectly tile an ax b rectangle

o0

~

GCD: largest

\_

such square
tile

y




Common Factors

@ Common Divisor: ¢ is a common divisor of integers a and b
if cla and c|b. [a.k.a. common factor]

@ Greatest Common Divisor ( for (a,b)#(0,0) )
gcd(a,b) = largest among common divisors of a and b

aVva,b,n € Z, common-divisors(a,b) = common-divisors(a,b+na)
ai.e., (xla A x|b) < (xla A x|b+na). [Verify!]
o Hence, va,b,n € Z, gcd(a,b) = gcd(a,b+na)

o In particular, va,b € Z, gcd(a,b) = ged(a,r), where b = ag+r
and 0 < r<a



Euclids GCD Algorithm

[Here all numbers are positive integers]

@ Find the largest square perfectly tiling a x b rectangle

common-divisors(a,b) = common-divisors(a,b-a)
gcd(a,b) = ged(a,b-a)

.

BEERER l

10

16

[ gcd(6,16) = gcd(6,10) ]




Euclids GCD Algorithm

[Here all numbers are positive integers]

@ Find the largest square perfectly tiling a x b rectangle
common-divisors(a,b) = common-divisors(a,b-qa)
gcd(a,b) = ged(a,b-qa)

16

36-116 = 6-(16-26) = 6-4 = 2 |
gcd(6,16) = ged(6,4) = ged(2,4) = 2




The Hoppy Bunny

@ A bunny is sitting on an infinite number line, at position O

@ The bunny has two hops — of lengths a and b, where a,b € Z
@ Can hop to left or right (irrespective of the sign of a,b)

@ What all points can the bunny reach?

@ After u a-hops and v b-hops (u, v could be negative, indicating
direction opposite a or bs sign), bunny is at a-u + b-v

aFor any a, b € Z, let L(a,b) be the set of all integer combination

of g, b. i.e.,, L(a,b) = { au+bv | u,v € 7 }



The One Dimensional Lattice

aFor any a, b € Z, let L(a,b) be the set of all integer combination
of a, b. i.e., L(a,b) = §{ au+bv | u,v € 7 }

@ Claim: L(a,b) consists of exactly all the multiples of gcd(a,b)

@ Proof: Note that gcd(a,b) divides every element in L(a,b). i.e.,
every element in L(a,b) is a multiple of gcd(a,b). We shall prove
below that gcd(a,b) € L(a,b), so that all its multiples are also in

L(a,b) (L(a,b) being closed under multiplication by integers).

@ By the well-ordering principle, let d be the smallest element
in L*(a,b) 2 L(a,b) n Z+.

@ Let d=au+bv. Let a=dq+r, where 0<r<d. So, r=a-(au+bv)q €
L(a,b). Since r<d, we require r¢ L*(a,b). So r=0. i.e., dla.
Similarly, dlb. That is, d is a common divisor. So, d < gcd(a,b).

@ But del(a,b) = gcd(a,b)ld = ged(a,b)<d. So ged(a,b) =d € L(a,b)



Primes

» Definition: peZ is said to be a prime number if p 2 2 and the

only positive factors of p are 1 and p itself
82,35 711,13,17,19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ..

Unique Factorisation
(Fundamental Theorem of Arithmetic):
vae 4, if a > 2 then 3! (py,...,pt, di,...,dt) s.t.

LW P1 < .. < pt primes, di,...,di€Z*, and a = pyd! pyd2... psdt

® Recall: We already saw that prime factorisation exists
(using strong induction)

® Will prove uniqueness now



Primes

» Definition: peZ is said to be a prime number if p 2 2 and the

only positive factors of p are 1 and p itself

o Euclids Lemma

va,b,pe Z s.t. p is prime (p | ab) — ( pla v plb )

@ Since the only positive factors of p are 1, p, we have
gcd(a,p) = 1 or ged(a,p) = p

@ If gcd(a,p) = p, then pla v

o If ged(a,p) =1, Ju,v s.t. 1 = au+pv = b = bau + bpv =beL(ab,p)
But plab and plp. So plb.



Primes

» Definition: peZ is said to be a prime number if p 2 2 and the

only positive factors of p are 1 and p itself

o Euclids Lemma

va,b,pe Z s.t. p is prime (p | ab) — ( pla v plb )

® Generalisation of Euclids Lemma (Prove by induction):
vay,.., an, p€ Z s.t. p is prime, (p | ai---an) — 3, pla

@ Uniqueness of prime factorisation: Suppose z is the smallest
positive integer with two distinct prime factorisations as
Z =P Pm = Qi *Qn.  Max{py,..,Pmi # Maxiqy,...,.qny (Why?).
So w.l.o.g., pm> qi, i=l to n. Now, pm | qi--:qn = pm | g
for some i (by Lemma). This contradicts pm > q.



