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The Skippy Clock

Has 13 hours on its dial!


Needle moves two hours at a time


Which all numbers will the needle 
reach?


Reaches all of them!


Because it reaches 1!
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Integers: Basics

Z : set of all integers { ..., -2, -1, 0, 1, 2, ... }


Operations addition, subtraction and multiplication (and 
their various properties)


Definition: For a,b∈Z, a|b (a divides b) if ∃q∈Z  b = qa


a|b ≡ b is a multiple of a ≡ a is a divisor of b


Multiples of a : { ..., -2a, -a, 0, a, 2a, ... }


Divisors of b: all a such that a|b  
[ a.k.a. factors ]



Question

Consider the following two statements:


(I)  ∀ a∈Z, a | 0


(II) ∀ b∈Z, -1 | b  

 

A. One of them is undefined 
B. (I) is true and (II) is false  
C. (II) is true and (I) is false  
D. Both are true 
E. Both are false

1

0 = 0.a

b = (-b).(-1)



Integers: Basics

Proposition: ∀ a,b,c∈Z  if a|b, then a|bc


Proposition: ∀ a,b,c∈Z  if a|b and a|c, then a|(b+c)


Proposition: ∀ a,b,c∈Z  if a|b and b|c, then a|c


Proposition: ∀ a,b,c∈Z  if ac|bc and c≠0, then a|b


Proposition: ∀ a,b∈Z  if a|b and b≠0, then |a| ≤ |b|


   b = qa  
⇒ bc = q’a,  where q’=qc

   b = qa & c = q’a  
⇒ b+c = q’’a,  where q’’=q+q’

   b = qa & c = q’b  
⇒ c = q’’a,  where q’’=qq’

  bc = qac  & c≠0  
⇒ b = qa

  b = qa & b≠0 ⇒ |b| = |q|⋅|a| where |q| ≥ 1


                   ⇒ |b| = |a| + (|q|-1)⋅|a| ≥ |a|



Division

Proof of existence

We shall prove it for all non-negative b and positive a. Then, the 
other cases can be proven as follows:


a>0, b<0: b = -(-b) = -(q⋅a+r) = -(q+1)a + (a-r), and  0 ≤ a-r < a

a<0, b>0: b = q⋅(-a)+r = -qa + r, and 0 ≤ r < |a|

a<0, b<0: b = -(-b) = -(q⋅(-a)+r) = (q+1)a + (-a-r), and 0 ≤ -a-r < |a|


Fix any a>0. We use strong induction on b.

Base cases: b ∈ [0,a). Then let q=0 and r=b : b = 0.a + b.

Induction step: We shall prove that for all k ≥ a,  
   (induction hypothesis): if ∀b∈Z+ s.t. b<k, ∃q,r s.t b=qa+r & 0 ≤ r ≤ a  

   (to prove): then ∃q*,r* s.t. k = q*⋅a + r*  &  0 ≤ r* ≤ a.

 Consider k’=k-a. 0≤k’<k. By ind. hyp. k’=q’a+r’. Let q*=q’+1, r*=r’.  ☐

For any two integers a and b, a≠0, there is a unique 
quotient q and remainder r (integers), such that  

   b = q⋅a + r,   0 ≤ r < |a|

Here, 
case 
r>0.  

If r=0, 
b = ±qa 



Division

Proof of existence

Also known as “Division Algorithm” (when you unroll the inductive 
argument, you get a (naïve) algorithm)


Proof of uniqueness: 


Claim: if b = q1⋅a + r1 = q2⋅a + r2, where 0 ≤ r1,r2 < |a|,  
        then q1=q2 and r1=r2


Suppose, q1⋅a + r1 = q2⋅a + r2. Then (r1-r2) = (q2-q1)a. i.e., a|(r1-r2).

W.l.o.g, r1 ≥ r2. So, 0 ≤ (r1-r2) < |a|. Now, the only multiple of a in 
that range is 0.  So r1 = r2. Then (q1-q2)a = 0. Since a≠0, q1=q2.

For any two integers a and b, a≠0, there is a unique 
quotient q and remainder r (integers), such that  

   b = q⋅a + r,   0 ≤ r < |a|
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e.g.  
b=11  

q=1, r=4

For any two integers a and b, a≠0, there is a unique 
quotient q and remainder r (integers), such that  

   b = q⋅a + r,   0 ≤ r < |a|



Common Factors
Common Divisor: c is a common divisor of integers a and b  
                    if c|a and c|b. [a.k.a. common factor]


Greatest Common Divisor ( for (a,b)≠(0,0) ) 
    gcd(a,b) = largest among common divisors of a and b


Well-defined: 1 is always a common factor. And, no common 
factor is larger than min(|a|,|b|) (unless a=b=0). So gcd(a,b) is an 
integer in the range [1, min(|a|,|b|)].


e.g.  Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }.  
      Divisors(18) = { ±1, ±2, ±3, ±6, ±9, ±18 }.  
      Common-divisors(12,18) = { ±1, ±2, ±3, ±6 }. gcd(12,18) = 6


e.g.  Divisors(0) = Z. ∀x≠0  gcd(x,0) = |x|.  

      Also, ∀x,a ∈ Z, |x| ∈ Divisors(ax). If x≠0, gcd(x,ax)=|x|.



d is a common factor of a & b, iff a d x d square tile can be 
used to perfectly tile an a x b rectangle  
 

GCD as Tiling 
[Here all numbers are positive integers]

GCD: largest 
such square 

tile
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Common Factors
Common Divisor: c is a common divisor of integers a and b  
                    if c|a and c|b. [a.k.a. common factor]


Greatest Common Divisor ( for (a,b)≠(0,0) ) 
    gcd(a,b) = largest among common divisors of a and b

∀a,b,n ∈ Z, common-divisors(a,b) = common-divisors(a,b+na)


i.e., (x|a ∧ x|b) ⟷ (x|a ∧ x|b+na). [Verify!]


Hence, ∀a,b,n ∈ Z, gcd(a,b) = gcd(a,b+na)


In particular, ∀a,b ∈ Z, gcd(a,b) = gcd(a,r), where b = aq+r 

and 0 ≤ r < a



Find the largest square perfectly tiling a x b rectangle  
 

Euclid’s GCD Algorithm 
[Here all numbers are positive integers]
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gcd(6,16)

10

 = gcd(6,10) 

common-divisors(a,b) = common-divisors(a,b-a) 
gcd(a,b) = gcd(a,b-a) 



16

 26 - 4  =6 - (16-2⋅6)  =3⋅6 - 1⋅16  =

Find the largest square perfectly tiling a x b rectangle  
 

Euclid’s GCD Algorithm 
[Here all numbers are positive integers]
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gcd(6,16) = gcd(2,4) = gcd(6,4)  = 2

gcd(a,b) = gcd(a,b-qa) 
common-divisors(a,b) = common-divisors(a,b-qa) 

∀ a,b ∈ Z  

∃ u,v ∈ Z 

gcd(a,b) = 
u⋅a + v⋅b



The Hoppy Bunny
A bunny is sitting on an infinite number line, at position 0  
 

 

 

The bunny has two hops — of lengths a and b, where a,b ∈ Z


Can hop to left or right (irrespective of the sign of a,b)


What all points can the bunny reach?


After u a-hops and v b-hops (u, v could be negative, indicating 
direction opposite a or b’s sign), bunny is at a⋅u + b⋅v

For any a, b ∈ Z, let L(a,b) be the set of all integer combinations

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }



The One Dimensional Lattice

Claim: L(a,b) consists of exactly all the multiples of gcd(a,b)


Proof: Note that gcd(a,b) divides every element in L(a,b). i.e., 
every element in L(a,b) is a multiple of gcd(a,b). We shall prove 
below that gcd(a,b) ∈ L(a,b), so that all its multiples are also in 
L(a,b) (L(a,b) being closed under multiplication by integers).


By the well-ordering principle, let d be the smallest element 
in L+(a,b) ≜ L(a,b) ∩ Z+. 


Let d=au+bv. Let a=dq+r, where 0≤r<d. So, r=a-(au+bv)q ∈ 
L(a,b). Since r<d, we require r∉ L+(a,b). So r=0. i.e., d|a. 
Similarly, d|b. That is, d is a common divisor. So, d ≤ gcd(a,b).


But d∈L(a,b) ⇒ gcd(a,b)|d ⇒ gcd(a,b)≤d. So gcd(a,b) = d ∈ L(a,b)

For any a, b ∈ Z, let L(a,b) be the set of all integer combinations

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }



Primes
Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, ...


Unique Factorisation  
(Fundamental Theorem of Arithmetic):  

∀a∈ Z, if a ≥ 2 then ∃! (p1,...,pt, d1,...,dt) s.t.  

 

p1 < ... < pt primes, d1,...,dt∈Z+, and a = p1d1 p2d2... ptdt


Recall: We already saw that prime factorisation exists  
(using strong induction)


Will prove uniqueness now



Primes
Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself


Euclid’s Lemma 
∀a,b,p∈ Z s.t. p is prime (p | ab) → ( p|a ∨ p|b )


Since the only positive factors of p are 1, p, we have  
gcd(a,p) = 1 or gcd(a,p) = p.


If gcd(a,p) = p, then p|a ✓


If gcd(a,p) = 1, ∃u,v s.t. 1 = au+pv ⇒ b = bau + bpv ⇒b∈L(ab,p)  

But p|ab and p|p. So p|b. 
     



Primes
Definition: p∈Z is said to be a prime number if p ≥ 2 and the 

only positive factors of p are 1 and p itself


Euclid’s Lemma 
∀a,b,p∈ Z s.t. p is prime (p | ab) → ( p|a ∨ p|b )


Generalisation of Euclid’s Lemma (Prove by induction):  
∀a1,…, an, p∈ Z s.t. p is prime,  (p | a1⋅⋅⋅an) → ∃ i,  p|ai 


Uniqueness of prime factorisation: Suppose z is the smallest 
positive integer with two distinct prime factorisations as  
z = p1⋅⋅⋅pm = q1⋅⋅⋅qn. max{p1,…,pm} ≠ max{q1,…,qn} (Why?).
So w.l.o.g., pm > qi , i=1 to n.

This contradicts pm > qi.     
Now, pm | q1⋅⋅⋅qn ⇒ pm | qi

for some i (by Lemma).


