Numb3rs

Lecture 5 Modular Arithmetic

Story So Far

- Quotient and Remainder
- - Euclid's algorithm to compute gcd(a,b)

- Primes
 - Fundamental Theorem of Arithmetic

Question

$$\circ$$
 2520 = $2^3 \cdot 3^2 \cdot 5 \cdot 7$
3300 = $2^2 \cdot 3 \cdot 5^2 \cdot 11$
gcd (2520, 3300) =

A. 10

B. 30

C. 60

D. 150

E. 180

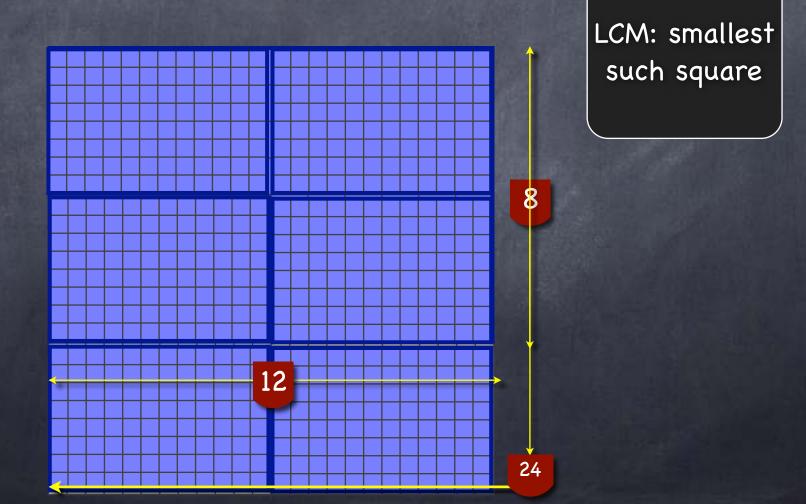
Common Multiples

- Common Multiple: c is a common multiple of a and b if a|c and b|c.
- Least Common Multiple (for a≠0 and b≠0) lcm(a,b) = smallest positive integer among the common multiples of a and b
 - Well-defined: a⋅b is a positive common multiple of (a,b) (unless a=0 or b=0) and we restrict to positive multiples. So an integer in the range [1, a⋅b].
 - e.g. $36 = 2^2 \cdot 3^2$, $30 = 2 \cdot 3 \cdot 5$. $lcm(36,30) = 2^2 \cdot 3^2 \cdot 5 = 180$

LCM as Tiling

[Here all numbers are positive integers]

om is a common multiple of a & b, iff an a x b tile can be used to perfectly tile an m x m square



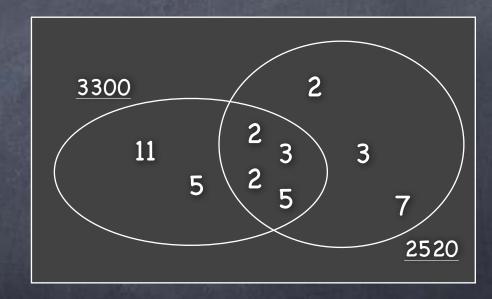
Question

$$\circ$$
 2520 = $2^3 \cdot 3^2 \cdot 5 \cdot 7$

$$3300 = 2^2 \cdot 3 \cdot 5^2 \cdot 11$$

lcm (2520, 3300) =

$$C.\ 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$$



$$\circ$$
 gcd(a,b) · lcm (a,b) = |a·b| [Why?]

Quotient & Remainder

For any two integers m and a, m≠0, there is a unique quotient q and remainder r, such that $a = q \cdot m + r$, and $0 \le r < |m|$

-2	-14	-13	-12	-11	-10	-9	-8	
-1	-7	-6	-5	-4	-3	-2	-1	
O q	Ö	i	² / ₂	3	4	<u>5</u>	6	
1	7	8	9	10	11_	12	13	<u>e.</u> a:
2	14	15	16	17	18	19	20	q=1,

m=7

<u>e.g.</u> a=11 q=1, r=4

For a "modulus" m and two integers a and b, we say a = b (mod m) if m|(a-b)

- Proof: Let rem(a,m) = r_1 , rem(b,m)= r_2 . Let a= q_1 m + r_1 and b= q_2 m + r_2 . Then a-b = (q_1-q_2) m + (r_1-r_2) .
 - \triangleright a-b=qm \Rightarrow (r₁-r₂) = q'm. r₁,r₂ \in [0,m) \Rightarrow |r₁-r₂| < m \Rightarrow r₁=r₂
 - ho $r_1=r_2 \Rightarrow a-b=qm$ where $q=q_1-q_2$.

For a "modulus" m and two integers a and b, we say $a = b \pmod{m}$ if $m \mid (a-b)$

distance between a&b is a multiple of m

a&b on same column

1.3	-12	-11	-10	-9	-8
6	-5	-4	-3	-2	-1
	2 2	3 3	4	5 5	6

modulus=

a&b have same remainder w.r.t. m

12 10

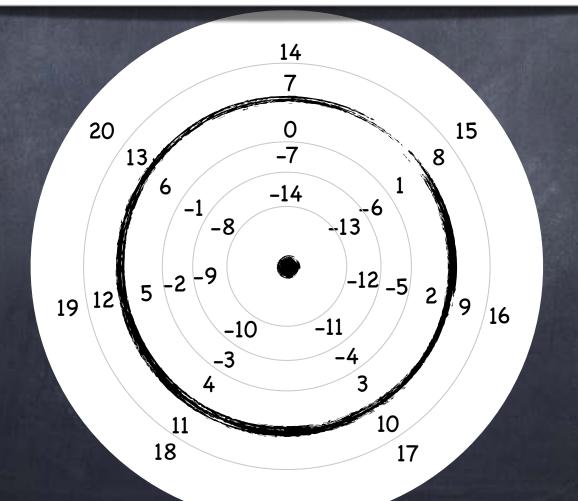
 $11 \equiv 18 \pmod{7}$ $11 \equiv -10 \pmod{7}$

 $9 \equiv 2 \pmod{7}$

15 14

17

For a "modulus" m and two integers a and b, we say $a = b \pmod{m}$ if m|(a-b)



modulus= 7

Question

 \odot Pick correct values for x in $-11 \equiv x \pmod{7}$

A. 4 and -3

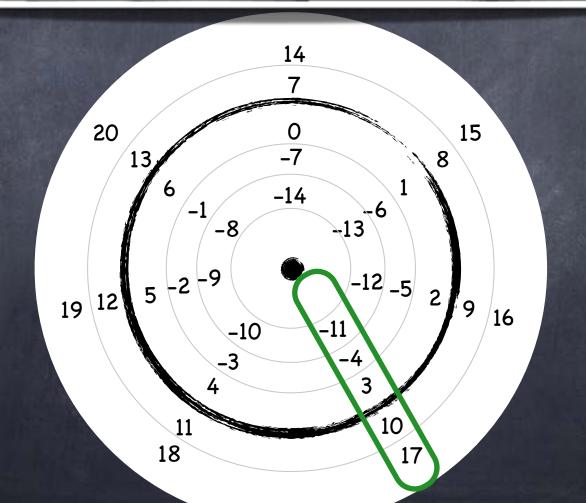
B. 3 and -4

C. -3 and -4

D. 4 and -4

E. 3 and -3

For a "modulus" m and two integers a and b, we say a = b (mod m) if ml(a-b)



modulus= 7

Modular Arithmetic

- Fix a modulus m.
 Elements of the universe: columns in the "table" for m
- Let [a]_m stand for the column containing a

 - \circ e.g.: $[-17]_5 = [-2]_5 = [3]_5$
- \odot We shall define operations in \mathbb{Z}_m , i.e., among the columns

Modular Addition

- Modular addition: $[a]_m +_m [b]_m ≜ [a+b]_m$
 - Well-defined? Or, are we defining the same element to have two different values?
 - - \circ i.e., " \rightarrow (a+b) = (a'+b') (mod m)?

Modular Addition

- Modular addition: $[a]_m +_m [b]_m ext{ } = [a+b]_m$

$$1 + 4 \equiv 0 \pmod{5}$$

 $2 + 3 \equiv 0 \pmod{5}$

$$7 + -25$$

$$\equiv 7 \pmod{5}$$

-25	-24	-23	-22	-21
-20	-19	-18	-17	-16
-15	-14	-13	-12	-11
-10	-9	-8	-7	-6
-5	-4	-3	-2	-1
0	1	2	3	4
5	6	7	8	9

$$-8 + -19$$
= 2+1 (mod 5)

Modular Addition

Every element a has an additive inverse -a, so that $a + (-a) \equiv 0 \pmod{m}$

+	0	1	2	3	4
0	0	1	2	3	4
1	1	2	თ	4	0
2	2	3	4	0	1
3	3	4	0	1	2
4	4	0	1	2	3

-	-	_			and the second	
+	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	თ	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

More generally, $a + x \equiv b \pmod{m}$ always has a solution, x = b-a

ø e.g. p = 5

Modular Multiplication

- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$

Modular Multiplication

- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$

 7×-20 $\equiv 0 \pmod{5}$

-20	-19	-18	-17	-16
-15	-14	-13	-12	-11
-10	-9	-8	-7	-6
-5	-4	_3	-2	-1
0	1	2	3	4
5	6	7	8	9

$$-8 \times -19$$

$$\equiv 2 \times 1 \pmod{5}$$

identity of multiplication

Modular Multiplication

ø e.g. m = 6

Sometimes, the product of two non-zero numbers can be zero!

×	0	1	2	3	4
0	0	0	0	0	0
1	0	1	2	3	4
2	0	2	4	1	3
3	0	3	1	4	2
4	0	4	3	2	1

×	O	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	0	2	4
3	0	3	0	3	0	3
4	0	4	2	0	4	2
5	0	5	4	3	2	1

ø e.g. p = 5

Modular Arithmetic

- Modular addition: $[a]_m +_m [b]_m ext{ } = [a+b]_m$
- Modular multiplication: $[a]_m \times_m [b]_m \triangleq [a \cdot b]_m$
- Well-defined: if $a \equiv a' \pmod{m}$ and $b \equiv b' \pmod{m}$, then
 - $a + b \equiv a' + b' \pmod{m}$
 - $a \cdot b \equiv a' \cdot b' \pmod{m}$

Question

A. O

B. 1

C. 2

D. 3

E. 4

$$8^8 \equiv 3^8 \pmod{5}$$

$$3^2 \equiv 4 \pmod{5}$$

$$3^4 \equiv 4^2 \equiv 1 \pmod{5}$$

$$3^8 \equiv 1^2 \equiv 1 \pmod{5}$$

Modular Arithmetic

- Modular addition: $[a]_m +_m [b]_m ext{ } = [a+b]_m$
- Modular multiplication: $[a]_m$ ×_m $[b]_m$ ≜ $[a \cdot b]_m$
- Multiplicative Inverse! a has a multiplicative inverse modulo m iff a is co-prime with m.
 - $gcd(a,m)=1 \leftrightarrow \exists u,v \ au+mv=1 \leftrightarrow \exists u \ [a]_m \times_m [u]_m = [1]_m$
 - e.g. [2]₉ ×₉ [5]₉ = [1]₉ so [2]₉⁻¹ = [5]₉ and [5]₉⁻¹ = [2]₉
 - For a prime modulus p, all except [0]_p have inverses!