
Numb3rs
Lecture 6


Modular Arithmetic  
And More Intriguing Structures
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Story So Far
Quotient and Remainder


GCD


Euclid’s algorithm to compute gcd(a,b)


L(a,b) ≜ { au + bv | u,v ∈ Z }  

        = { n⋅gcd(a,b) | n ∈ Z }


Primes


Fundamental Theorem of Arithmetic


Modular Arithmetic (Zm)


Addition and Multiplication


Multiplicative Inverse!


gcd(a,m)=1 ↔ ∃u,v au+mv=1 ↔ ∃u [a]m ×m [u]m = [1]m


For prime p, every element in Zp\{0} has mult. inverse

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1



Question

Suppose d|m. Consider the two statements:  
 

I.  ∀a,b  a ≡ b (mod m) → a ≡ b (mod d)  

II. ∀a,b  a ≡ b (mod d) → a ≡ b (mod m)  
 

        A. Both I & II are true  
        B. I is true, II is false 
        C. I is false, II is true 
        D. Both I & II are false
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Chiming Clocks

Two clocks, with a hours and b hours on their dials


Say they both start at 0, and move one step every 
minute


e.g., a=13, b=9. After 3 minutes, both point to 3.  
After 10 minutes, the first clock points to 10,  
and the second to 1.


Each clock has a position where it chimes, say  
r and s, respectively


e.g., r=11 and s=5


Question: Will the two clocks ever chime together? 
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An Example

Say, a=3 and b=5


Note that after lcm(a,b) = 15 steps, both 
clocks will be back to 0


So enough to check the first 15 steps


Let’s find out all pairs (r,s) that the two 
clocks will simultaneously reach


All 15 possible pairs occur, once each!

time Clock 1 Clock 2

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4
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As Modular Arithmetic

Consider mapping elements in Z15 (all 15 of 

them) to Z3 and Z5


x ↦ (x mod 3, x mod 5)


All 15 possible pairs occur, once each


That is, for each (r,s) ∈ Z3 × Z5, there is 

exactly one x such that  
         x ≡ r (mod 3) and x ≡ s (mod 5)


For which a,b are we guaranteed that there 
is a solution for this system (no matter what 
r,s is)? 

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a 
unique solution (modulo ab) to the system  

      x ≡ r (mod a) and x ≡ s (mod b)


Proof of existence:


Will solve for (r,s)=(1,0) and for (r,s)=(0,1)


i.e., α ≡  1 (mod a), α ≡ 0 (mod b),  

     β ≡ 0 (mod a), β ≡  1 (mod b),


Then, can let x = αr+βs. 

∃ u,v  au+bv=1  (can compute using EEA)


Let α = 1-au = bv  and β = 1-bv = au

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a 
unique solution (modulo ab) to the system  

      x ≡ r (mod a) and x ≡ s (mod b)


Existence: x = bvr + aus, where au+bv=1 


Uniqueness:


There are only ab possible values of x


There are ab pairs (r,s)


Each x is a solution for exactly one (r,s)


Every pair (r,s) has at least one solution


Hence, no pair (r,s) has two solutions

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a 
unique solution (modulo ab) to the system  

      x ≡ r (mod a) and x ≡ s (mod b)


Existence: x = bvr + aus, where au+bv=1 


Uniqueness: |Zab| = |Za| ⋅ |Zb|


CRT Representation:


Represent x ∈ Zab as the pair  

(r,s) = ( rem(x,a), rem(x,b) ) ∈ Za × Zb


Can go back from (r,s) to x uniquely,  
using EEA

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



Suppose m = ab, where gcd(a,b) = 1


Can use CRT representation to do arithmetic in 
Zm using arithmetic in Za and Zb


CRT representation of Zm: every element of Zm 

can be written as a unique element of  Za × Zb


Addition and multiplication can be done 
coordinate-wise in CRT representation


If rem(x,a)=r and rem(x’,a)=r’, then  
rem(x+x’,a) ≡ r + r’ (mod a). Similarly, mod b.


(r, s) +(m) (r’, s’) = (r +(a) r’, s +(b) s’)


Similarly,  
   (r, s) ×(m) (r’, s’) = (r ×(a) r’, s ×(b) s’)

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

Arithmetic Using CRT
m = ab, where gcd(a,b) = 1

m = ab, where gcd(a,b) = 1



CRT and Inverses
Addition and multiplication can be done 
coordinate-wise in CRT representation


Additive identity is (0,0) and multiplicative 
identity is (1,1)


Additive and multiplicative inverses are 
coordinate-wise too


(r,s) +(m) (r’,s’) = (0,0) ⟷ r+(a)r’= 0, s+(b) s’= 0 


(r,s) ×(m) (r’,s’) = (1,1) ⟷ r×(a)r’= 1, s×(b) s’= 1 

m = ab, where gcd(a,b) = 1

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4



CRT and Inverses
Addition and multiplication can be done 
coordinate-wise in CRT representation


Additive identity is (0,0) and multiplicative 
identity is (1,1)


Additive and multiplicative inverses are 
coordinate-wise too


(r,s) +(m) (r’,s’) = (0,0) ⟷ r+(a)r’= 0, s+(b) s’= 0 


(r,s) ×(m) (r’,s’) = (1,1) ⟷ r×(a)r’= 1, s×(b) s’= 1 


x has multiplicative inverse modulo m iff it 
has multiplicative inverses modulo a and b


gcd(x,m)=1 ↔ gcd(x,a)=1 and gcd(x,b)=1 

Z15 Z3 Z5

0 0 0

1 1 1

2 2 2

3 0 3

4 1 4

5 2 0

6 0 1

7 1 2

8 2 3

9 0 4

10 1 0

11 2 1

12 0 2

13 1 3

14 2 4

m = ab, where gcd(a,b) = 1



CRT Beyond 2 Factors
Suppose m = a1 ⋅ a2 ⋅ … ⋅ an, where gcd(ai,aj)=1 for all i≠j. For any 
(r1,…,rn) with ri ∈ Zai for each i, there is a unique solution in Zn for 

the system of congruences  x ≡ ri  (mod ai)  for i=1,…,n


Proof by (weak) induction:


Base case: n=1 ✓


Induction step: We shall prove that for all k ≥ 1,  
(induction hypothesis) if every system of k congruences with co-
prime moduli has a unique solution,  
(to prove) then so does every such system of k+1 congruences


Given (a1,…,ak+1,r1,…,rk+1), define a system for (a1,…,ak,r1,…,rk), 
get its unique solution, say s. Define a system of 2 
congruences, with co-prime moduli a= a1⋅…⋅ak, and b=ak+1,  
     x ≡ s (mod a) and x ≡ rk+1 (mod ak+1).  
By CRT, this has a unique solution. This is the unique solution 
for the original system (why?).



Multiplicative Inverses, Again
Recall: a has a multiplicative inverse in Zm iff gcd(a,m) = 1


Such an element is called a unit of Zm


How many units are there in Zm?


When m is prime?  m-1 (all except 0)


When m = p2, where p is prime?


A common factor with p2 iff a multiple of p (in {0,p,2p,…,(p-1)p} )


i.e., p2 - p


When m = pk, where p is prime? pk-pk-1 = m(1-1/p)


When m = p1d1⋅…⋅pndn  where pi are primes?


By CRT, elements of the form (r1,…,rn), where each ri is 
invertible modulo pidi


Πi  pidi (1-1/pi) = m(1-1/p1)⋅…⋅(1-1/pn) 



Multiplicative Inverses, Again

How many units are there in Zm?


φ(m) = m(1-1/p1)⋅…⋅(1-1/pn) where  
p1,…,pn are the prime factors of m


Euler’s φ function (a.k.a. Euler's totient function)

If gcd(a,b) = 1, then φ(ab) = φ(a)⋅φ(b)

Such a function is called 
a multiplicative function



Multiplicative Inverses, Again

Examples


m=6


φ(6) = (2-1)(3-1) = 2

Z*6 = {1, 5}


m=10


φ(10) = (2-1)(5-1) = 4

Z*10 = {1,3,7,9}


Note: The multiplication table  
restricted to units only has units!


Why?

× 0 2 3 4 5 1
0 0 0 0 0 0 0

2 0 4 0 2 4 2

3 0 0 3 0 3 3

4 0 2 0 4 2 4

5 0 4 3 2 1 5

1 0 2 3 4 5 1

× 0 2 4 6 8 5 1 3 7 9
0 0 0 0 0 0 0 0 0 0 0
2 0 4 8 2 6 0 2 6 4 8
4 0 8 6 4 2 0 4 2 8 6
6 0 2 0 4 2 0 6 8 2 4
8 0 6 3 2 4 0 8 4 6 2
5 0 0 0 0 0 5 5 5 5 5
1 0 2 4 6 8 5 1 3 7 9
3 0 6 2 8 4 5 3 9 1 7
7 0 4 8 2 6 5 7 1 9 3
9 0 8 6 4 2 5 9 7 3 1



The Units, Z*m

If a∈Zm\ Z*m then ∃u≠0 s.t. au=0 in Zm


a not unit ⇒ gcd(a,m)>1 ⇒ m/gcd(a,m) < m  

             ⇒ ∃u (namely m/gcd(a,m)) s.t. 0 < u < m, au = 0 in Zm


Converse also holds: 

Suppose ∃u≠0, au=0 and ba=1. Then 0 = b0 = bau = 1u = u !


a∈Z*m → a-1 ∈Z*m 


a,b ∈Z*m → ab∈Z*m,  because (ab)(b-1a-1) = 1


For each a∈Z*m, a⋅Z*m ≜ { ab | b ∈ Z*m} = Z*m 


Since a,b ∈Z*m → ab∈Z*m, we have a⋅Z*m ⊆ Z*m


∀x∈Z*m we have a-1x∈Z*m (why?) ⇒ x∈a⋅Z*m . Hence Z*m ⊆ a⋅Z*m


So a⋅Z*m = Z*m (the row for a in the multiplication table 

restricted to Z*m has exactly all the elements in Z*m)



Euler’s Totient Theorem

∀a∈Z*m,  aφ(m) ≡ 1  (mod m)


Proof: Fix any m and a∈Z*m.  

Let Z*m = {x1,…,xn} where n = φ(m).  

Let u = x1…xn and w = (a⋅x1)⋅…⋅(a⋅xn).  
       ⇒ w = an⋅u.  

But also, w = Πx∈aZ*m x = Πx∈Z*m x = u   (because a⋅Z*m = Z*m) 

       ⇒ u = an⋅u, where u ∈ Z*m  

       ⇒ 1 = an by multiplying both sides with u-1     ☐


Special case, when m is a prime


Fermat’s Little Theorem: 
For prime p and a not a multiple of p,  ap-1 ≡ 1 (mod p)


