Numb3rs

Lecture 6
Modular Arithmetic
And More Infriguing Structures




Story So Far

@ Quotient and Remainder
@ GCD
@ Euclids algorithm to compute gcd(a,b)
ol(ab) 2 {au+bv|uveZ} .
={n-gcd(a,b) | neZ} =

@ Primes A S R S

@ Fundamental Theorem of Arithmetic
o Modular Arithmetic (Zm)
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@ Addition and Multiplication N ifzfslslolgglofifalsis

@ Multiplicative Inverse! el 3[4of1|2|MENOf3]1]4]2]
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@ gcd(a,m)=1l < 3u,v au+rmv=l < 3Tu [a]n Xm [U]m = [1]n

o For prime p, every element in Z,\{0} has mult. inverse



Question

@ Suppose d|m. Consider the two statements:

I. va,b a
II. va,b a

b (mod m) — a = b (mod d)
b (modd) — a =b (mod m)

A. Both I & II are true
B. I is true, II is false
C. I is false, II is true
D. Both I & II are false



Chiming Clocks

@ Two clocks, with a hours and b hours on their dials

@ Say they both start at O, and move one step every |
minute

® e.g., a=13, b=9. After 3 minutes, both point to 3. §
After 10 minutes, the first clock points to 10,
and the second to 1.

@ Each clock has a position where it chimes, say
r and s, respectively

@ e.g., r=11 and s=5

@ Question: Will the two clocks ever chime fogether?




An Example

Say, a=3 and b=5

Note that after lcm(a,b) = 15 steps, both
clocks will be back to O

So enough to check the first 15 steps

Lets find out all pairs (r,s) that the two
clocks will simultaneously reach

@ All 15 possible pairs occur, once each!

time |Clock 1jClock 2
o) o) 0)
| | |
2 2 2
3 0] 3
4 | 4
5 2 o)
6 0) 1
7 | 2
8 2 3
9 o) 4

10 | 0
11 2 |
12 0] 2
13 | 3
14 2 4




As Modular Arithmetic

@ Consider mapping elements in Z;s (all 15 of
them) to Z3 and Zs

@ X = (x mod 3, x mod 5)
@ All 15 possible pairs occur, once each
& That is, for each (r,s) € Zs x Zs, there is

exactly one x such that
X =1 (mod 3) and x = s (mod 5)

@ For which a,b are we guaranteed that there
is a solution for this system (no matter what
r,S is)?

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 1
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




Chinese Remainder Theorem

@ If gcd(a,b) = 1, then for all (r,s) there is a
unique solution (modulo ab) to the system
X =1 (mod a) and x = s (mod b)

® Proof of existence:
@ Will solve for (r,s)=(1,0) and for (r,s)=(0,1)

® ie,a=1(mod a), « = 0 (mod b),
B =0 (mod a), B =1 (mod b),

@ Then, can let x = ar+fs.
@ 3 uv aut+bv=l (can compute using EEA)

® Let « =1-au = bv and B = 1-bv = au

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 |
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




Chinese Remainder Theorem

@ If gcd(a,b) = 1, then for all (r,s) there is a
unique solution (modulo ab) to the system
X =1 (mod a) and x = s (mod b)

® Existence: x = bvr + aus, where au+bv=1

@ Uniqueness:
® There are only ab possible values of x
@ There are ab pairs (r,s)
@ Each x is a solution for exactly one (r;s)
@ Every pair (r;s) has at least one solution

@ Hence, no pair (r;s) has two solutions

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 |
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




Chinese Remainder Theorem

@ If gcd(a,b) = 1, then for all (r,s) there is a
unique solution (modulo ab) to the system
X =1 (mod a) and x = s (mod b)

® Existence: x = bvr + aus, where au+bv=1

@ Uniqueness: |Za| = |Zd| - |Zsl

@ CRT Representation:

@ Represent x € Zq, as the pair
(r;s) = ( rem(x,a), rem(x,b) ) € Z, x Zy

@ Can go back from (r,s) fo x uniquely,
using EEA

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 |
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




‘m = ab, where gcd(a,b) = 1}

Arithmetic Using CRT

® Suppose m = ab, where gcd(a,b) = 1

@ Can use CRT representation to do arithmetic in
4y, using arithmetic in Z, and 4,

@ CRT representation of Znm: every element of Zn,
X

can be written as a unique element of Z, x Z,

@ Addition and multiplication can be done
coordinate-wise in CRT representation

@ If rem(x,a)=r and rem(x’,a)=r’, then

rem(x+x’,a) = r + r (mod a). Similarly, mod b.

@3 (rns) +m(,s)=@C+ar,s +ps)

@ Similarly,
(r, s) xm (r', §') = (r x@Tr’, s X s)

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 1
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




‘m = ab, where gcd(a,b) = 1}

CRT and Inverses

@ Addition and multiplication can be done
coordinate-wise in CRT representation

@ Additive identity is (0,0) and multiplicative
identity is (1,1)

@ Additive and mulfiplicative inverses are
coordinate-wise foo

& (ns) +m) (r',s’) =(0,0) «— r+@r'=0, s+ps=0

e (ns) xm (r',s) =(1,1) < rxEr'=1, sxps=1

45 43 ds
0] 0] 0
| | |
2 2 2
3 0 3
4 | 4
5 2 0
6 0 1
7 | 2
8 2 3
9 0] 4
10 | 0
11 2 |
12 0 2
13 | 3
14 2 4




‘m = ab, where gcd(a,b) = 1}

CRT and Inverses

@ Addition and multiplication can be done
coordinate-wise in CRT representation

@ Additive identity is (0,0) and multiplicative
identity is (1,1)

@ Additive and mulfiplicative inverses are
coordinate-wise foo

& (ns) +m) (r',s’) =(0,0) «— r+@r'=0, s+ps=0
e (ns) xm (r',s) =(1,1) < rxEr'=1, sxps=1

@ X has multiplicative inverse modulo m iff it
has multiplicative inverses modulo a and b

@ gcd(x,m)=1 < gcd(x,a)=1 and gcd(x,b)=1

45

43

ds

11

13

14




CRT Beyond 2 Factors

® Suppose m =a; * dz * .. - Gn, Where gcd(aj,a;)=1 for all i#j. For any
(ry,...,rn) with ri € Z, for each i, there is a unique solution in Z, for

the system of congruences x = ri (mod ai) for i=l,..,n

@ Proof by (weak) induction:
@ Base case: n=1 vV

@ Induction step: We shall prove that for all k 2 1,

(induction hypothesis) if every system of k congruences with co-
prime moduli has a unique solution,

(to prove) then so does every such system of k+l congruences

@ Given (ay,...,Qk+1,1,...,Tk+1), define a system for (ay,...,ak,r1,...,Tk),
get its unique solution, say s. Define a system of 2
congruences, with co-prime moduli a= a;-...-ax, and b=aki,

X = s (mod a) and X = rks1 (mod ak.1).
By CRT, this has a unique solution. This is the unique solution
for the original system (why?).



Multiplicative Inverses, Again

® Recall: a has a multiplicative inverse in Zn iff gcd(a,m) = 1

® Such an element is called a unit of Zn,

& How many units are there in Z,?

® When m is prime? m-1 (all except 0)

@ When m = p?, where p is prime?
® A common factor with p2 iff a multiple of p (in {O,p,2p,....(p-1)p} )
@ le, pz-p

® When m = pk, where p is prime? pk-pk-l = m(1-1/p)

@ When m = pjdi-...-ppdn  where p; are primes?

® By CRT, elements of the form (ry,...,rn), where each r is
invertible modulo pidi

@ I pidi (l—l/pi) = m(l-l/pl)- ...'(l-l/pn)



Multiplicative Inverses, Again

s How many units are there in 7,,?
@ ¢(m) = m(1-1/p1)-...-(1-1/pn) where
P1,...,.pn are the prime factors of m
@ Eulers ¢ function (a.k.a. Euler's totient function)

> If ged(a,b) = 1, then y(ab) = -bj “
o gc (a ) < cp(a ) Lp(a) LP( ) Such a function is called

a multiplicative function




Multiplicative Inverses, Again

@ Examples
® m=6
o o(6) = (2-1)(3-1) = 2
o Zi = {1, 5}
@ m=10
@ o(10) = (2-1)(5-1) = 4
o Zio = {1,3,7,9}

@ Note: The mulfiplication table
restricted to units only has units!

@ Why?

SleNfolo]o]~ ook



>

If aeZ,\

@& a not unit =

= 3u (namely m/gcd(a,m)) s.t. 0 <cu<m, au=0inZ

The Units,

4 then 3u#0 s.t. au=0 in 4y

gcd(a,m)>1 = m/gcd(a,m) < m

Converse also holds:
@ Suppose Juz#0, au=0 and ba=1. Then O = bO = bau = lu = u !

aedy, — al €dn,
a,b €4y, — abe
For each ae#n,

® Since a,b €4,

& Vxed;, we have a-'xeZn (Why?) = xea-

restricted to

4., because (ab)(b-la-!) =1

a-Zn 2 {ab | b e Znt = Zn

— abe#r, we have a-Zy C 4n

4 has exactly all the elements in

4, . Hence Z,,

C

= Zr, (the row for a in the multiplication table

Z:)

a

m



Eulers Totient Theorem

o vacZn, a*m =1 (mod m)

& Proof: Fix any m and aeZx.
Let Z;, = {X1,...,.Xn} Where n = o(m).
Let u = X1...Xn and w = (a-X1)...-(a- Xn).
= W = an-u.
But also, W = Tlxeazr, X = Ilxezx, X = u (because a-Zr, = Zy,)

= u = a"u, where u € 4y
= 1 = a” by multiplying both sides with u-l O

@ Special case, when m is a prime

® Fermats Little Theorem:
For prime p and a not a multiple of p, ar-! =1 (mod p)




