

Numb3rs

Lecture 6 Modular Arithmetic And More Intriguing Structures Story So Far Quotient and Remainder **GCD** \odot Euclid's algorithm to compute gcd(a,b) $= \{ n \cdot qcd(a,b) \mid n \in \mathbb{Z} \}$ • Primes Fundamental Theorem of Arithmetic O Modular Arithmetic (\mathbb{Z}_m) 2 3 0 0 3 Addition and Multiplication 0 Multiplicative Inverse! • For prime p, every element in $\mathbb{Z}_p \setminus \{0\}$ has mult. inverse

Question

Suppose d|m. Consider the two statements:

I. $\forall a, b \quad a \equiv b \pmod{m} \rightarrow a \equiv b \pmod{d}$ II. $\forall a, b \quad a \equiv b \pmod{d} \rightarrow a \equiv b \pmod{m}$

A. Both I & II are trueB. I is true, II is falseC. I is false, II is trueD. Both I & II are false

Chiming Clocks

10

9

Two clocks, with a hours and b hours on their dials

- Say they both start at 0, and move one step every minute
 - e.g., a=13, b=9. After 3 minutes, both point to 3. After 10 minutes, the first clock points to 10, and the second to 1.
- Each clock has a position where it chimes, say r and s, respectively

Question: Will the two clocks ever chime together?

An Example

Say, a=3 and b=5

- Note that after lcm(a,b) = 15 steps, both clocks will be back to 0
- So enough to check the first 15 steps
- Let's find out <u>all pairs</u> (r,s) that the two clocks will simultaneously reach
 - All 15 possible pairs occur, once each!

time	Clock 1	Clock 2	
0	0	0	
1	1	1	
2	2	2	
3	0	3	
4	1	4	
5	2	0	
6	0	1	
7	1	2	
8	2	3	
9	0	4	
10	1	0	
11	2	1	
12	0	2	
13	1	3	
14	2	4	

As Modular Arithmetic

• Consider mapping elements in \mathbb{Z}_{15} (all 15 of them) to \mathbb{Z}_3 and \mathbb{Z}_5 $x \mapsto (x \mod 3, x \mod 5)$ All 15 possible pairs occur, once each That is, for each $(r,s) \in \mathbb{Z}_3 \times \mathbb{Z}_5$, there is exactly one x such that $x \equiv r \pmod{3}$ and $x \equiv s \pmod{5}$ For which a,b are we guaranteed that there is a solution for this system (no matter what r,s is)?

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5	
0	0	0	
1	1	1	
2	2	2	
3	0	3	
4	1	4	
5	2	0	
6	0	1	
7	1	2	
8	2	3	
9	0	4	
10	1	0	
11	2	1	
12	0	2	
13	1	3	
14	2	4	

Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system
 x = r (mod a) and x = s (mod b)

Proof of existence:

Will solve for (r,s)=(1,0) and for (r,s)=(0,1)i.e., $\alpha \equiv 1 \pmod{a}$, $\alpha \equiv 0 \pmod{b}$, $\beta \equiv 0 \pmod{a}$, $\beta \equiv 1 \pmod{b}$,

Then, can let $x = \alpha r + \beta s$.

 $\exists u,v au+bv=1$ (can compute using EEA)

 \oslash Let $\alpha = 1$ -au = bv and $\beta = 1$ -bv = au

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system
 x = r (mod a) and x = s (mod b)

- Existence: x = bvr + aus, where au+bv=1
- Oniqueness:
 - There are only ab possible values of x
 - There are ab pairs (r,s)
 - Each x is a solution for exactly one (r,s)
 - Every pair (r,s) has at least one solution
 - Hence, no pair (r,s) has two solutions

\mathbb{Z}_{15}	\mathbb{Z}_3	\mathbb{Z}_5		
0	0	0		
1	1	1		
2	2	2		
3	0	3		
4	1	4		
5	2	0		
6	0	1		
7	1	2		
8	2	3		
9	0	4		
10	1	0		
11	2	1		
12	0	2		
13	1	3		
14	2	4		

Chinese Remainder Theorem

If gcd(a,b) = 1, then for all (r,s) there is a unique solution (modulo ab) to the system
 x = r (mod a) and x = s (mod b)

- Existence: x = bvr + aus, where au+bv=1
- Uniqueness: $|\mathbb{Z}_{ab}| = |\mathbb{Z}_a| \cdot |\mathbb{Z}_b|$
- CRT Representation:

Oremorement x ∈ \mathbb{Z}_{ab} as the pair
 (r,s) = (rem(x,a), rem(x,b)) ∈ $\mathbb{Z}_a \times \mathbb{Z}_b$

Can go back from (r,s) to x uniquely, using EEA

I_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

Arithmetic Using CRT

- Suppose m = ab, where gcd(a,b) = 1
- Can use CRT representation to do arithmetic in \mathbb{Z}_m using arithmetic in \mathbb{Z}_a and \mathbb{Z}_b
- CRT representation of \mathbb{Z}_m : every element of \mathbb{Z}_m can be written as a unique element of $\mathbb{Z}_a \times \mathbb{Z}_b$
- Addition and multiplication can be done coordinate-wise in CRT representation
 - If rem(x,a)=r and rem(x',a)=r', then rem(x+x',a) = r + r' (mod a). Similarly, mod b.

 $(r, s) +_{(m)} (r', s') = (r +_{(a)} r', s +_{(b)} s')$

Similarly,

 $(r, s) \times_{(m)} (r', s') = (r \times_{(a)} r', s \times_{(b)} s')$

I_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

CRT and Inverses

- Addition and multiplication can be done coordinate-wise in CRT representation
 - Additive identity is (0,0) and multiplicative identity is (1,1)
- Additive and multiplicative inverses are coordinate-wise too

 $(r,s) \times_{(m)} (r',s') = (1,1) \leftrightarrow r \times_{(a)} r' = 1, s \times_{(b)} s' = 1$

L ₁₅	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

m = ab, where gcd(a,b) = 1

CRT and Inverses

- Addition and multiplication can be done coordinate-wise in CRT representation
 - Additive identity is (0,0) and multiplicative identity is (1,1)
- Additive and multiplicative inverses are coordinate-wise too

- $(r,s) \times_{(m)} (r',s') = (1,1) \leftrightarrow r \times_{(a)} r' = 1, s \times_{(b)} s' = 1$
- ∞ x has multiplicative inverse modulo m iff it has multiplicative inverses modulo a and b
 ∞ gcd(x,m)=1 ↔ gcd(x,a)=1 and gcd(x,b)=1

I_{15}	\mathbb{Z}_3	\mathbb{Z}_5
0	0	0
1	1	1
2	2	2
3	0	3
4	1	4
5	2	0
6	0	1
7	1	2
8	2	3
9	0	4
10	1	0
11	2	1
12	0	2
13	1	3
14	2	4

CRT Beyond 2 Factors

Suppose $m = a_1 \cdot a_2 \cdot ... \cdot a_n$, where $gcd(a_i, a_j)=1$ for all $i \neq j$. For any $(r_1, ..., r_n)$ with $r_i \in \mathbb{Z}_{a_i}$ for each i, there is a unique solution in \mathbb{Z}_n for the system of congruences $x \equiv r_i \pmod{a_i}$ for i=1,...,n

Proof by (weak) induction:

- 👁 Base case: n=1 🗸
- Induction step: We shall prove that for all k ≥ 1, (induction hypothesis) if every system of k congruences with coprime moduli has a unique solution, (to prove) then so does every such system of k+1 congruences
 - Given (a₁,...,a_{k+1},r₁,...,r_{k+1}), define a system for (a₁,...,a_k,r₁,...,r_k), get its unique solution, say s. Define a system of 2 congruences, with co-prime moduli a= a₁ · ... · a_k, and b=a_{k+1},

 $x \equiv s \pmod{a}$ and $x \equiv r_{k+1} \pmod{a_{k+1}}$.

By CRT, this has a unique solution. This is the <u>unique</u> solution for the original system (why?).

Multiplicative Inverses, Again

- - $_{\odot}$ Such an element is called a unit of \mathbb{Z}_m
- **The set of the set of a set**
- When m is prime? m-1 (all except 0)
- When $m = p^2$, where p is prime?
 - A common factor with p² iff a multiple of p (in {0,p,2p,...,(p-1)p})
 i.e., p² p
- When $m = p^k$, where p is prime? $p^{k-p^{k-1}} = m(1-1/p)$
- When $m = p_1^{d_1} \cdot \dots \cdot p_n^{d_n}$ where p_i are primes?
 - By CRT, elements of the form (r₁,...,r_n), where each r_i is invertible modulo p_i^{d_i}

Multiplicative Inverses, Again

How many units are there in Z_m?
φ(m) = m(1-1/p₁) · ... · (1-1/p_n) where p₁,...,p_n are the prime factors of m
Euler's φ function (a.k.a. Euler's totient function)
If gcd(a,b) = 1, then φ(ab) = φ(a) · φ(b) - for each part of the second second

Such a function is called a <u>multiplicative function</u>

Multiplicative Inverses, Again

Seamples

@ m=6

 $\phi(6) = (2-1)(3-1) = 2$ $\mathbb{Z}_{6}^{*} = \{1, 5\}$

m=10

Note: The multiplication table restricted to units only has units!
Why?

×	0	2	3	4	5	1					
0	0	0	0	0	0	0					
2	0	4	0	2	4	2	C. Here				
3	0	0	3	0	3	3					
4	0	2	0	4	2	4					
5	0	4	3	2	1	5	1				
1	0	2	3	4	5	1	71				
	×	0	2	4	6	8	5	1	3	7	9
	0	0	0	0	0	0	0	0	0	0	0
	2	0	4	8	2	6	0	2	6	4	8
	4	0	8	6	4	2	0	4	2	8	6
	6	0	2	0	4	2	0	6	8	2	4
	8	0	6	3	2	4	0	8	4	6	2
	5	0	0	0	0	0	5	5	5	5	5
	1	0	2	4	6	8	5	1	3	7	9
	3	0	6	2	8	4	5	3	9	1	7
	7	0	4	8	2	6	5	7	1	9	3
	9	0	8	6	4	2	5	9	7	3	1

The Units, \mathbb{Z}_m^*

If a∈Z_m\ Z_m^{*} then ∃u≠0 s.t. au=0 in Z_m
a not unit ⇒ gcd(a,m)>1 ⇒ m/gcd(a,m) < m
⇒ ∃u (namely m/gcd(a,m)) s.t. 0 < u < m, au = 0 in Z_m
Converse also holds:

Suppose $\exists u \neq 0$, au=0 and ba=1. Then 0 = b0 = bau = 1u = u ! $a \in \mathbb{Z}_m^* \to a^{-1} \in \mathbb{Z}_m^*$

a,b ∈ \mathbb{Z}_m^* → ab∈ \mathbb{Z}_m^* , because (ab)(b⁻¹a⁻¹) = 1

So For each a∈ℤ^{*}_m, a · ℤ^{*}_m ≜ { ab | b ∈ ℤ^{*}_m} = ℤ^{*}_m

 \bullet Since $a, b \in \mathbb{Z}_m^* \to ab \in \mathbb{Z}_m^*$, we have $a \cdot \mathbb{Z}_m^* \subseteq \mathbb{Z}_m^*$

∀x∈ℤ^{*}_m we have a⁻¹x∈ℤ^{*}_m (why?) ⇒ x∈a · ℤ^{*}_m. Hence ℤ^{*}_m ⊆ a · ℤ^{*}_m

So $\mathbf{a} \cdot \mathbb{Z}_m^* = \mathbb{Z}_m^*$ (the row for a in the multiplication table restricted to \mathbb{Z}_m^* has exactly all the elements in \mathbb{Z}_m^*)

Euler's Totient Theorem

Proof: Fix any m and $a \in \mathbb{Z}_m^*$.
Let $\mathbb{Z}_m^* = \{x_1, \dots, x_n\}$ where $n = \varphi(m)$.
Let $u = x_1 \dots x_n$ and $w = (a \cdot x_1) \cdot \dots \cdot (a \cdot x_n)$. $\Rightarrow w = a^n \cdot u$.

But also,
$$w = \prod_{x \in a\mathbb{Z}_m^*} x = \prod_{x \in \mathbb{Z}_m^*} x = u$$
 (because $a \cdot \mathbb{Z}_m^* = \mathbb{Z}_m^*$)
 $\Rightarrow u = a^n \cdot u$, where $u \in \mathbb{Z}_m^*$

 \Rightarrow 1 = aⁿ by multiplying both sides with u⁻¹

Special case, when m is a prime

Fermat's Little Theorem:
For prime p and a not a multiple of p, $a^{p-1} \equiv 1 \pmod{p}$