Numb3rs

Lecture 7
Modular Arithmetic
And Some Cryptography




Story So Far

@ Quotient and Remainder, GCD, Euclids algorithm,
L(a,b) 2 {au+bv|uveZ}={ngcdlab)|neZ}

@ Primes, Fundamental Theorem of Arithmetic
@ Modular Arithmetic (Zn) : Addition, Multiplication

o Chinese Remainder Theorem : for m = a;-...-a, where a;js coprime 48

@ CRT representation in Zn : x ~ (ry,...,ra) where ri = rem(x,a;)

@ (ry,...,rn) » x s.t. vi, x = rj (mod a;) (computable using EEA)

@ Can ftell time in the big clock from time in n small clocks

& Multiplicative Inverse and Zn :

@ acZr : gcd(a,m)=1 < 3Ju,v au+mv=l < 3Ju [a]m Xm [Un = [1]m

@ 4n closed under multiplication and inversion

o Euler’s Totient function : |Zn| = ¢(m) = m(1-1/p1)...(1-1/pn), where ai=pidi

@ Eulers Totient theorem: vxeZ;, xom =1



Eulers Totient Theorem

o vacZy,, a*m =1 (mod m)

@& Proof: Fix any m>1 and aeZn,.
Let Z;, = {X1,...,.Xn} Where n = o(m).
Let u = X1...Xn and W = (a-X1)...-(a- Xn).
= W = an-u.
But also, W = Tlxeazx, X = Ilxezx, X = u (because a-Zr, = Zy,)

= u = a"u, where u € 4y
= 1 = a” by multiplying both sides with u-l O

@ Special case, when m is a prime

@ Fermats Little Theorem:
For prime p and a not a multiple of p, ar-! =1 (mod p)




Eulers Totient Theorem

o vaey,, a“m =1 (mod m)

@ In many cases (e.g., m prime), ¢(m) happens to be the smallest
positive number for which this holds for all aeZx

@ But for specific a, we can have ad = 1 for d < ¢(m)

@ e.qg., if a = b2 then a#m/2 = 1 (mod m)

@ Note: for all m>2, ¢(m) is even (why?)

& If b = ¢ (mod ¢(m)), then for all acZ;, ab|= a¢ (mod m)

@ e.g. 88 = 39 (mod 5) because ¢(5) = 4

Let m=2d-k for odd k.
Then, ©(m) = 2d-1p(k).
If d>1, 2d-1 even. v

~

If d=0 or 1, since m23, we have k23
and so has kK an odd prime factor p

= (p-1)lg(m) = ¢(m) even




Modular Exponentiation

@ For a € Z,, we have already (implicitly) defined an in Z, as
a X(m) @ X(m) ... X(m) a (n ’rimes)

@ Note: n is a non-negative integer here (with a® 2 1, the
multiplicative identity)

& Familiar laws hold: For b,ceN, ab-ac = ab+c, and (ab)c = abe,
operations in the exponent being in N, others in Zn,
@ In Zr, can allow negative n too: for n<0, an 2 (a-!)", where a-! is the
multiplicative inverse of a.
@& For acZm, and b,ceZ, ab x(m) a¢ = ab+¢ and (ab)c = abc, where
again, the multiplication in the exponent is for integers

@ Also, if aab = Bac, then « = 3 a<b, again the exponent in N



Modular Exponentiation
And Eulers Totient Function

o In Zn, a¢!m =1
@ = ab =1 if o(m)lb
@ = ab< =1 if ¢(m) | b-¢, i.e., if b = ¢ (mod (m))

® So xY = rem(x,m) remly.«(m) (mod m)

@ Offers a way to speed up modular exponentiation,
if we know ¢(m)



Question

@910 = x (mod 13), where x = ?
(Hint: 9-1 =3 (mod 13) )
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Cryptography from #Z

@ A building block in “public key encryption” schemes is a “trapdoor
one-way permutation”

@ Roughly, it is a bijection (permutation) that is easy to compute
but hard to invert (one-way); but while defining the function
you can setup a hidden mechanism (trapdoor) that makes it easy
to invert too

@ Will see two trapdoor one-way permutation candidates
® Rabins function: Based on square-roots

8@ Rivest-Shamir-Adleman (RSA) function: Based on Eulers Totient
theorem

@ Both use a modulus of the form m=pq (p,q large primes)

@ Breaking would be easy if m prime. Also can be broken if
factors of m known (via CRT).



A Word on Efficiency

@ Very huge numbers have very short representation
@ Take a 256 bit integer, 11..1 = 22%-]

@ How long would it take for a computer to just count up to this
number? Not even if it runs

@ at the frequency of molecular vibrations (104 Hz)
® for the entire estimated lifetime of the universe (< 108 s)

® What if you recruited every atom in the earth (x1050) to do the
same?

@ OK, but still will get only to 1082 = 2272,

@ And even if you recruited every elementary particle in the
known universe (=10%0), only up to 1012 =~ 2372

® The whole universe cant count up to a 400-bit number!



A Word on Efficiency

@ The whole universe cant count up to a 400-bit number!

@ But we can quickly add, multiply, divide and exponentiate much
larger numbers

@ Roughly, can "compute on” n-bit numbers in n or n2 steps

@ But not if you try an algorithm based on counting through all
the numbers! That takes 2n steps. (e.g., exponentiation can use
repeated squaring, but not naive repeated multiplication)

@ For some problems involving n-bit numbers we dont know
algorithms that do much better than 2n, 2n/2 etc.

® We believe for some such problems no better algorithms exist!

@ (Currently, only a belief based on failure to discover better
algorithms)

@ Such hardness forms the basis of much of modern cryptography



Cyclic Structure of Z;

@ The mulfiplicative clock!

@ Clocks hand starts at 1 (not 0) and multiplies the curren,
position by some g#0 to get to the next one |

@ 1,9, 9% .. gr? gprl=l
@ If g=1, it never moves
@ If g=-1, it keeps switching positions between 1 and -1
@ It never reaches O

@ A g which will make the hand go everywhere (except 0)?

@ Important Fact (wont prove): If p is a prime, then there is a g s.t.
every element in Z; is of the form gk

@ e.g., p=5, g=2: 1, 2, 4, 3.
p=7,g=3: 1, 3 2 6 4 5. True for some ]

other values also




Cyclic Structure of Z;

® Important Fact (wont prove): If p is a prime, then
Aged, vxedp 3K, 0 < k < p-1, x=gX

x I

@ Such a g is called a “generator of Z;

@ There is a Zp; hiding in Z!

@ Can order the numbers in Z; as 1,g,g2,.. (for some g)

@ Number gk is relabelled as k. Multiplication in Z, becomes
addition in Z,_;!

@ Discrete Log: Given x and a generator g of Z;, a K s.t. gk = x.

@ Can "efficiently” go from g to gk, for any keZ,_,, but apparently
not easy to go backwards <[ A candidate for a “one-way function” }




Squares Iin 4,

® Quadratic Residues: Elements in Z;, of the form x2

w

@ In Z;, for prime p: “even numbers”, 1, g2, g4, ..., gP-
@ Exactly half of Z; are quadratic residues (p>2)
@ Will call them QR;

@ Given (z,p) can we efficiently check if zcQR; ?

® Bad idea: Compute discrete log (w.r.t. some generator g) and
check if it is even

® Good idea: Just check if z(p-1/2 = 1.
If z = g2k, z(p-1)/2 = gklp-1) = 1.
1f z = 92k+1, z(p-1)/2 = gk(p-l) + (p-1)/2 = g(p—l)/z + 1 (Why?)



Square-roots in 4,

& What are all the square-roots of x2in Zp?

@ Lets find all the square roots of 1

@ x2=1 © (x+1)(x-1) = 0 & (x+1)=0 or (x-1)=0 (why?)
& x=1 or x=-1

@ /1 =+l

@ glr-1/2 = -1, because (glP-1/2)2 = 1 and glP-/2 # 1

® More generally «/(a?) = #a (i.e., only a and -1-a ) [Why?]



Square-roots in QR

o In 4 J(x2) = £x
® How many square-roots stay in QR,?

@ Depends on p!
o e.g. QRi; = {£1,43,+4}

@ 1,3,-4 have 2 square-roots each. But -1,-3,4
have none within QR;3

@ Since -1 € QRj;, x € QR};= -x € QR;3

o -1 € QR; iff (p-1)/2 even

o If (p-1)/2 odd, exactly one of +x in QR; (for all x)

@ Then, squaring is a permutation in QR;



Square-roots in QR

o In 4 J(x2) = +x

@ If (p-1)/2 odd, squaring is a permutation in QR;

@ But easy fo compute both ways

o In fact J/z = z(p+D/4 ¢ QR; (because (p+1)/2 even)

@ Rabin function defined in @R}, and relies on keeping
the factorisation of m=pq hidden



Rabin Function

@ Rabinm(x) = X2 mod m
@ with m=pq (p,q random k-bit primes for, say k=1024)

@ Conjectured to be a one-way function

o If p, 9 =3 (mod 4), then in QR;, this function

@ Is a permutation
@ Has a trapdoor for inverting, namely (p,q)
@ Exercise (Hint: CRT)

@ Candidate Trapdoor One-Way Permutation



RSA Function

@ RSAme(X) = x¢ mod m
@ where m=pq, and gcd(e,p(m)) =1 (i.e., e € Zym))

@ A commonly used version (for efficiency) fixes e=3
® RSAme is a permutation with a trapdoor (namely d) <
® In fact, there exists d s.t. RSAm4 is the inverse of RSAme

@ gcd(e,p(m)) =1 = 3d s.t. ed=1 (mod ¢(m))

= xed = X in Zy, (by Eulers Totient Theorem)

® We defined RSAnc: Zn — Zrn. An alternative uses RSAme: Zm — Znm
@ Does inversion still work? (Eulers Totient Theorem doesnt hold)
@ Yes, by CRT [Exercise]

@ Conjectured to be a one-way function when m=pq generated
randomly (p, q both large primes)



