
Numb3rs
Lecture 7

Modular Arithmetic  
And Some Cryptography

1

2

3

4

5
67

8

9

10

11

12
0

Story So Far
Quotient and Remainder, GCD, Euclid’s algorithm,  
L(a,b) ≜ { au + bv | u,v ∈ Z } = { n⋅gcd(a,b) | n ∈ Z }

Primes, Fundamental Theorem of Arithmetic

Modular Arithmetic (Zm) : Addition, Multiplication

Chinese Remainder Theorem : for m = a1⋅…⋅an where ai’s coprime

CRT representation in Zm : x ↦ (r1,…,rn) where ri = rem(x,ai)

(r1,…,rn) ↦ x s.t. ∀i, x ≡ ri (mod ai) (computable using EEA)

Can tell time in the big clock from time in n small clocks

Multiplicative Inverse and Z*m :

a∈Z*m : gcd(a,m)=1 ↔ ∃u,v au+mv=1 ↔ ∃u [a]m ×m [u]m = [1]m

Z*m closed under multiplication and inversion

Euler’s Totient function : |Z*m| = φ(m) = m(1-1/p1)…(1-1/pn), where ai=pidi

Euler’s Totient theorem: ∀x∈Z*m, xφ(m) = 1

1

23

4

0

12

0

Euler’s Totient Theorem

∀a∈Z*m, aφ(m) ≡ 1 (mod m)

Proof: Fix any m>1 and a∈Z*m.  

Let Z*m = {x1,…,xn} where n = φ(m).  

Let u = x1…xn and w = (a⋅x1)⋅…⋅(a⋅xn).  
 ⇒ w = an⋅u.  

But also, w = Πx∈aZ*m x = Πx∈Z*m x = u (because a⋅Z*m = Z*m) 

 ⇒ u = an⋅u, where u ∈ Z*m  

 ⇒ 1 = an by multiplying both sides with u-1 ☐

Special case, when m is a prime

Fermat’s Little Theorem: 
For prime p and a not a multiple of p, ap-1 ≡ 1 (mod p)

Euler’s Totient Theorem

∀a∈Z*m, aφ(m) ≡ 1 (mod m)

In many cases (e.g., m prime), φ(m) happens to be the smallest
positive number for which this holds for all a∈Z*m

But for specific a, we can have ad ≡ 1 for d < φ(m)

e.g., if a = b2 then aφ(m)/2 ≡ 1 (mod m)

Note: for all m>2, φ(m) is even (why?)

If b ≡ c (mod φ(m)), then for all a∈Z*m, ab ≡ ac (mod m)

e.g. 88 ≡ 30 (mod 5) because φ(5) = 4 Let m=2d⋅k for odd k. 
Then, φ(m) = 2d-1φ(k).

If d>1, 2d-1 even. ✓ 

If d=0 or 1, since m≥3, we have k≥3
and so has k an odd prime factor p

⇒ (p-1)|φ(m) ⇒ φ(m) even

Modular Exponentiation

For a ∈ Zm, we have already (implicitly) defined an in Zm as  

a ×(m) a ×(m) … ×(m) a (n times)

Note: n is a non-negative integer here (with a0 ≜ 1, the
multiplicative identity)

Familiar laws hold: For b,c∈N, ab⋅ac = ab+c, and (ab)c = abc,

operations in the exponent being in N, others in Zm

In Z*m, can allow negative n too: for n<0, an ≜ (a-1)n, where a-1 is the

multiplicative inverse of a.

For a∈Z*m, and b,c∈Z, ab ×(m) ac = ab+c and (ab)c = abc, where

again, the multiplication in the exponent is for integers

Also, if αab = βac, then α = β ac-b, again the exponent in N

Modular Exponentiation

In Z*m, aφ(m) = 1

⇒ ab = 1 if φ(m)|b

⇒ ab-c = 1 if φ(m) | b-c, i.e., if b ≡ c (mod φ(m))

So xy ≡ rem(x,m) rem(y,φ(m)) (mod m)

Offers a way to speed up modular exponentiation,  
if we know φ(m)

And Euler’s Totient Function

Question

910 ≡ x (mod 13), where x = ? 
(Hint: 9-1 ≡3 (mod 13)) 
 

 A. 3  
 B. 6  
 C. 7 
 D. 9 
 E. 10

1

Cryptography from Z*m

A building block in “public key encryption” schemes is a “trapdoor
one-way permutation”

Roughly, it is a bijection (permutation) that is easy to compute
but hard to invert (one-way); but while defining the function
you can setup a hidden mechanism (trapdoor) that makes it easy
to invert too

Will see two trapdoor one-way permutation candidates

Rabin’s function: Based on square-roots

Rivest-Shamir-Adleman (RSA) function: Based on Euler’s Totient
theorem

Both use a modulus of the form m=pq (p,q large primes)

Breaking would be easy if m prime. Also can be broken if
factors of m known (via CRT).

A Word on Efficiency
Very huge numbers have very short representation

Take a 256 bit integer, 11…1 = 2256-1

How long would it take for a computer to just count up to this
number? Not even if it runs

at the frequency of molecular vibrations (1014 Hz)

for the entire estimated lifetime of the universe (< 1018 s)

What if you recruited every atom in the earth (≈1050) to do the
same?

OK, but still will get only to 1082 ≈ 2272.

And even if you recruited every elementary particle in the
known universe (≈1080), only up to 10112 ≈ 2372

The whole universe can’t count up to a 400-bit number!

A Word on Efficiency
The whole universe can’t count up to a 400-bit number!

But we can quickly add, multiply, divide and exponentiate much
larger numbers

Roughly, can “compute on” n-bit numbers in n or n2 steps

But not if you try an algorithm based on counting through all
the numbers! That takes 2n steps. (e.g., exponentiation can use
repeated squaring, but not naïve repeated multiplication)

For some problems involving n-bit numbers we don’t know
algorithms that do much better than 2n, 2n/2 etc.

We believe for some such problems no better algorithms exist!

(Currently, only a belief based on failure to discover better
algorithms)

Such hardness forms the basis of much of modern cryptography

Cyclic Structure of Z*p
The multiplicative clock!

Clock’s hand starts at 1 (not 0) and multiplies the current  
position by some g≠0 to get to the next one

1, g, g2, …, gp-2, gp-1=1

If g=1, it never moves

If g=-1, it keeps switching positions between 1 and -1

It never reaches 0

A g which will make the hand go everywhere (except 0)?

Important Fact (won’t prove): If p is a prime, then there is a g s.t.
every element in Z*p is of the form gk

e.g., p=5, g=2: 1, 2, 4, 3.  
p=7, g=3: 1, 3, 2, 6, 4, 5.

1

23

4

0

True for some
other values also

Cyclic Structure of Z*p

Important Fact (won’t prove): If p is a prime, then  
∃g∈Z*p ∀x∈Z*p ∃k, 0 ≤ k < p-1, x=gk

Such a g is called a “generator of Z*p”

There is a Zp-1 hiding in Z*p!

Can order the numbers in Z*p as 1,g,g2,.. (for some g)

Number gk is relabelled as k. Multiplication in Z*p becomes

addition in Zp-1!

Discrete Log: Given x and a generator g of Z*p, a k s.t. gk = x.

Can “efficiently" go from g to gk, for any k∈Zp-1, but apparently

not easy to go backwards A candidate for a “one-way function”

1

5

2

7

3
10

4

6

9

8

Squares in Z*p

Quadratic Residues: Elements in Z*m of the form x2

In Z*p, for prime p: “even numbers”, 1, g2, g4, …, gp-3

Exactly half of Z*p are quadratic residues (p>2)

Will call them QR*p

Given (z,p) can we efficiently check if z∈QR*p ?

Bad idea: Compute discrete log (w.r.t. some generator g) and
check if it is even

Good idea: Just check if z(p-1)/2 = 1.  
 If z = g2k, z(p-1)/2 = gk(p-1) = 1. 
 If z = g2k+1, z(p-1)/2 = gk(p-1) + (p-1)/2 = g(p-1)/2 ≠ 1 (why?)

1

5

2

7

3
10

4

6

9

8

Square-roots in Z*p

What are all the square-roots of x2 in Z*p?

Let’s find all the square roots of 1

x2=1 ⇔ (x+1)(x-1) = 0 ⇔ (x+1)=0 or (x-1)=0 (why?) 

 ⇔ x=1 or x=-1

√1 = ±1

g(p-1)/2 = -1, because (g(p-1)/2)2 = 1 and g(p-1)/2 ≠ 1

More generally √(a2) = ±a (i.e., only a and -1⋅a) [Why?]

1

5

2

7

3
10

4

6

9

8

Z11*

Square-roots in QR*p

In Z*p √(x2) = ±x

How many square-roots stay in QR*p?

Depends on p!

e.g. QR*13 = {±1,±3,±4}

1,3,-4 have 2 square-roots each. But -1,-3,4
have none within QR*13

Since -1 ∈ QR*13, x ∈ QR*13⇒ -x ∈ QR*13

-1 ∈ QR*p iff (p-1)/2 even

If (p-1)/2 odd, exactly one of ±x in QR*p (for all x)

Then, squaring is a permutation in QR*p

1

5

2

7

3
10

4

6

9

8

Z11*

1
2

-1

4

8

3
6-2

-4

-8

-3

-6

Z13*

Square-roots in QR*p

In Z*p √(x2) = ±x

If (p-1)/2 odd, squaring is a permutation in QR*p

But easy to compute both ways

In fact √z = z(p+1)/4 ∈ QR*p (because (p+1)/2 even)

Rabin function defined in QR*m and relies on keeping

the factorisation of m=pq hidden

1

5

2

7

3
10

4

6

9

8

Z11*

Rabin Function
Rabinm(x) = x2 mod m

with m=pq (p,q random k-bit primes for, say k=1024)

Conjectured to be a one-way function

If p, q ≡3 (mod 4), then in QR*m this function

Is a permutation

Has a trapdoor for inverting, namely (p,q)

Exercise (Hint: CRT)

Candidate Trapdoor One-Way Permutation

RSA Function
RSAm,e(x) = xe mod m

where m=pq, and gcd(e,φ(m)) = 1 (i.e., e ∈ Z*φ(m))

A commonly used version (for efficiency) fixes e=3

RSAm,e is a permutation

In fact, there exists d s.t. RSAm,d is the inverse of RSAm,e

gcd(e,φ(m)) = 1 ⇒ ∃d s.t. ed=1 (mod φ(m))  

 ⇒ xed = x in Z*m (by Euler’s Totient Theorem)

We defined RSAm,e: Z*m → Z*m. An alternative uses RSAm,e: Zm → Zm

Does inversion still work? (Euler’s Totient Theorem doesn’t hold)

Yes, by CRT [Exercise]

Conjectured to be a one-way function when m=pq generated
randomly (p, q both large primes)

with a trapdoor (namely d)

