Numb3rs

Lecture 7
Modular Arithmetic
And Some Cryptography

Story So Far

- Quotient and Remainder, GCD, Euclid's algorithm, $L(a,b) \triangleq \{ au + bv \mid u,v \in \mathbb{Z} \} = \{ n \cdot gcd(a,b) \mid n \in \mathbb{Z} \}$
- Primes, Fundamental Theorem of Arithmetic
- \bullet Modular Arithmetic (\mathbb{Z}_m): Addition, Multiplication
- Chinese Remainder Theorem: for $m = a_1 \cdot ... \cdot a_n$ where a_i 's coprime
 - CRT representation in $\mathbb{Z}_m : x \mapsto (r_1, ..., r_n)$ where $r_i = \text{rem}(x, a_i)$
 - - Can tell time in the big clock from time in n small clocks
- \bullet Multiplicative Inverse and \mathbb{Z}_{m}^{*} :
- **Euler's Totient function** \mathbb{Z}^* | \mathbb{Z}_m^* | = $\varphi(m)$ = $m(1-1/p_1)...(1-1/p_n)$, where $a_i=p_i^{d_i}$
 - Euler's Totient theorem: $\forall x \in \mathbb{Z}_m^*$, $x^{\varphi(m)} = 1$

Euler's Totient Theorem

- Proof: Fix any m>1 and a∈ \mathbb{Z}_m^* .

```
Let \mathbb{Z}_m^* = \{x_1, ..., x_n\} where n = \varphi(m).
```

Let
$$u = x_1...x_n$$
 and $w = (a \cdot x_1) \cdot ... \cdot (a \cdot x_n)$.

$$\Rightarrow$$
 w = $a^n \cdot u$.

But also,
$$w = \prod_{x \in \mathbb{Z}_m^*} x = \prod_{x \in \mathbb{Z}_m^*} x = u$$
 (because $a \cdot \mathbb{Z}_m^* = \mathbb{Z}_m^*$)

$$\Rightarrow$$
 u = $a^n \cdot u$, where $u \in \mathbb{Z}_m^*$

$$\Rightarrow$$
 1 = a^n by multiplying both sides with u^{-1}

- Special case, when m is a prime
 - Fermat's Little Theorem:

For prime p and a not a multiple of p, $a^{p-1} \equiv 1 \pmod{p}$

Euler's Totient Theorem

- In many cases (e.g., m prime), $\varphi(m)$ happens to be the smallest positive number for which this holds for all $a \in \mathbb{Z}_m^*$
 - But for specific a, we can have $a^d = 1$ for d < φ(m)
 </p>
 - e.g., if $a = b^2$ then $a^{\varphi(m)/2} \equiv 1 \pmod{m}$
 - Note: for all m>2, $\varphi(m)$ is even (why?)
- If b ≡ c (mod φ(m)), then for all a∈ \mathbb{Z}_m^* , a^b ≡ a^c (mod m)
 - e.g. 8⁸ = 3⁰ (mod 5) because φ(5) = 4

Let $m=2^{d} \cdot k$ for odd k. Then, $\phi(m)=2^{d-1}\phi(k)$. If d>1, 2^{d-1} even. \checkmark If d=0 or 1, since $m\geq 3$, we have $k\geq 3$ and so has k an odd prime factor p $\Rightarrow (p-1)|\phi(m) \Rightarrow \phi(m)$ even

Modular Exponentiation

- For $a \in \mathbb{Z}_m$, we have already (implicitly) defined a^n in \mathbb{Z}_m as $a \times_{(m)} a \times_{(m)} ... \times_{(m)} a$ (n times)
 - Note: n is a non-negative integer here (with $a^0 \triangleq 1$, the multiplicative identity)
 - Familiar laws hold: For b,c $\in \mathbb{N}$, $a^{b} \cdot a^{c} = a^{b+c}$, and $(a^{b})^{c} = a^{bc}$, operations in the exponent being in \mathbb{N} , others in \mathbb{Z}_{m}
- In \mathbb{Z}_m^* , can allow negative n too: for n<0, $a^n \triangleq (a^{-1})^n$, where a^{-1} is the multiplicative inverse of a.
 - For $a \in \mathbb{Z}_m^*$, and $b, c \in \mathbb{Z}$, $a^b \times_{(m)} a^c = a^{b+c}$ and $(a^b)^c = a^{bc}$, where again, the multiplication in the exponent is for integers
 - Also, if αa^b = βa^c, then α = β a^{c-b}, again the exponent in Ν

Modular Exponentiation And Euler's Totient Function

- \bullet In \mathbb{Z}_{m}^{*} , $a^{\varphi(m)} = 1$
 - $\bullet \Rightarrow a^b = 1 \text{ if } \varphi(m)|b|$
 - $\Rightarrow a^{b-c} = 1$ if $\varphi(m) \mid b-c$, i.e., if $b = c \pmod{\varphi(m)}$
- So $x^y = rem(x,m)^{rem(y,\phi(m))}$ (mod m)
 - @ Offers a way to speed up modular exponentiation, if we know $\phi(m)$

Question


```
9^{10} \equiv x \pmod{13}, where x = ? (Hint: 9^{-1} \equiv 3 \pmod{13})
```

A. 3

B. 6

C. 7

D. 9

E. 10

Cryptography from \mathbb{Z}_{m}^{*}

- A building block in "public key encryption" schemes is a "trapdoor one-way permutation"
 - Roughly, it is a bijection (permutation) that is easy to compute but hard to invert (one-way); but while defining the function you can setup a hidden mechanism (trapdoor) that makes it easy to invert too
- Will see two trapdoor one-way permutation candidates
 - Rabin's function: Based on square-roots
 - Rivest-Shamir-Adleman (RSA) function: Based on Euler's Totient theorem
- Both use a modulus of the form m=pq (p,q large primes)
 - Breaking would be easy if m prime. Also can be broken if factors of m known (via CRT).

A Word on Efficiency

- Very huge numbers have very short representation
- Take a 256 bit integer, 11...1 = 2²⁵⁶-1
- How long would it take for a computer to just count up to this number? Not even if it runs
 - at the frequency of molecular vibrations (10¹⁴ Hz)
 - for the entire estimated lifetime of the universe (< 1018 s)
- What if you recruited every atom in the earth (≈1050) to do the same?
 - OK, but still will get only to 10^{82} ≈ 2^{272} .
 - ♠ And even if you recruited every elementary particle in the known universe (≈10⁸⁰), only up to $10^{112} \approx 2^{372}$
 - The whole universe can't count up to a 400-bit number!

A Word on Efficiency

- The whole universe can't count up to a 400-bit number!
- But we can quickly add, multiply, divide and exponentiate much larger numbers
- Roughly, can "compute on" n-bit numbers in n or n² steps
 - But not if you try an algorithm based on counting through all the numbers! That takes 2ⁿ steps. (e.g., exponentiation can use repeated squaring, but not naïve repeated multiplication)
- For some problems involving n-bit numbers we don't know algorithms that do much better than 2ⁿ, 2^{n/2} etc.
 - We believe for some such problems no better algorithms <u>exist!</u>
 - (Currently, only a belief based on failure to discover better algorithms)
- Such hardness forms the basis of much of modern cryptography

Cyclic Structure of \mathbb{Z}_p^*

- The multiplicative clock!
 - Clock's hand starts at 1 (not 0) and multiplies the current position by some g≠0 to get to the next one
 - - If g=1, it never moves
 - If g=-1, it keeps switching positions between 1 and −1
 - It never reaches 0
 - A g which will make the hand go everywhere (except 0)?
- Important Fact (won't prove): If p is a prime, then there is a g s.t. every element in \mathbb{Z}_p^* is of the form g^k
 - e.g., p=5, g=2: 1, 2, 4, 3.p=7, g=3: 1, 3, 2, 6, 4, 5.

True for some other values also

Cyclic Structure of \mathbb{Z}_p^*

- Important Fact (won't prove): If p is a prime, then $\exists g \in \mathbb{Z}_p^* \ \forall x \in \mathbb{Z}_p^* \ \exists k, 0 \le k < p-1, x=g^k$
 - lacksquare Such a g is called a "generator of \mathbb{Z}_p^* "
- There is a \mathbb{Z}_{p-1} hiding in \mathbb{Z}_p^* !

- Number g^k is relabelled as k. Multiplication in \mathbb{Z}_p^* becomes addition in $\mathbb{Z}_{p-1}!$
- The Discrete Log: Given x and a generator g of \mathbb{Z}_p^* , a k s.t. $g^k = x$.
- © Can "efficiently" go from g to g^k , for any $k \in \mathbb{Z}_{p-1}$, but apparently not easy to go backwards A candidate for a "one-way function"

Squares in \mathbb{Z}_p^*

- \odot Quadratic Residues: Elements in \mathbb{Z}_m^* of the form x^2
- o In \mathbb{Z}_p^* , for prime p: "even numbers", 1, g^2 , g^4 , ..., g^{p-3}
 - Exactly half of \mathbb{Z}_p^* are quadratic residues (p>2)
 - Will call them QR*
- \bullet Given (z,p) can we efficiently check if $z \in \mathbb{QR}_p^*$?
 - Bad idea: Compute discrete log (w.r.t. some generator g) and check if it is even
 - Good idea: Just check if $z^{(p-1)/2} = 1$.

 If $z = g^{2k}$, $z^{(p-1)/2} = g^{k(p-1)} = 1$.

 If $z = q^{2k+1}$, $z^{(p-1)/2} = q^{k(p-1) + (p-1)/2} = q^{(p-1)/2} \neq 1$ (why?)

Square-roots in \mathbb{Z}_p^*

- What are all the square-roots of x^2 in \mathbb{Z}_p^* ?
- Let's find all the square roots of 1

$$x^2=1 \Leftrightarrow (x+1)(x-1) = 0 \Leftrightarrow (x+1)=0 \text{ or } (x-1)=0 \text{ (why?)}$$

$$\Rightarrow x=1 \text{ or } x=-1$$

- $> \sqrt{1} = \pm 1$
- $g^{(p-1)/2} = -1$, because $(g^{(p-1)/2})^2 = 1$ and $g^{(p-1)/2} \neq 1$
- More generally $√(a^2) = \pm a$ (i.e., only a and $-1 \cdot a$) [Why?]

Square-roots in QRp

- $In <math>\mathbb{Z}_p^* \sqrt{(x^2)} = \pm x$
- \bullet How many square-roots stay in \mathbb{QR}_p^* ?
 - Depends on p!
 - \bullet e.g. $\mathbb{QR}_{13}^* = \{\pm 1, \pm 3, \pm 4\}$
 - □ 1,3,-4 have 2 square-roots each. But -1,-3,4 have none within $\mathbb{Q}\mathbb{R}_{13}^*$
 - $oldsymbol{\circ}$ Since $-1 \in \mathbb{QR}^*_{13}$, $\mathbf{x} \in \mathbb{QR}^*_{13} \Rightarrow -\mathbf{x} \in \mathbb{QR}^*_{13}$
- If (p-1)/2 odd, exactly one of ±x in ℚℝ^{*}_p (for all x)
 - \bullet Then, squaring is a permutation in \mathbb{QR}_p^*

Square-roots in QR*p

In
$$\mathbb{Z}_p^* \sqrt{(x^2)} = \pm x$$

- If (p-1)/2 odd, squaring is a permutation in ℚℝ^{*}_p
- But easy to compute both ways
 - In fact $√z = z^{(p+1)/4} ∈ ℚℝ_p[*] (because (p+1)/2 even)$
- ${}_{\mbox{\scriptsize 0}}$ Rabin function defined in ${}_{\mbox{\scriptsize QR}_{m}^{*}}$ and relies on keeping the factorisation of m=pq hidden

Rabin Function

- - with m=pq (p,q random k-bit primes for, say k=1024)
 - Conjectured to be a one-way function
 - If p, q = 3 (mod 4), then in $\mathbb{Q}\mathbb{R}_m^*$ this function
 - Is a permutation
 - Has a trapdoor for inverting, namely (p,q)
 - Exercise (Hint: CRT)
- Candidate Trapdoor One-Way Permutation

RSA Function

- $RSA_{m,e}(x) = x^e \mod m$
 - where m=pq, and gcd(e, φ (m)) = 1 (i.e., e $\in \mathbb{Z}_{\varphi(m)}^*$)
 - A commonly used version (for efficiency) fixes e=3
- \bullet RSA_{m,e} is a permutation with a trapdoor (namely d) \leftarrow
 - In fact, there exists d s.t. RSA_{m,d} is the inverse of RSA_{m,e} -
 - gcd(e,φ(m)) = 1 ⇒ ∃d s.t. ed=1 (mod φ(m))
 - \Rightarrow $x^{ed} = x$ in \mathbb{Z}_m^* (by Euler's Totient Theorem)
- We defined RSA_{m,e}: I_m^* → I_m^* . An alternative uses RSA_{m,e}: I_m → I_m
 - Does inversion still work? (Euler's Totient Theorem doesn't hold)
 - Yes, by CRT [Exercise]
- Conjectured to be a one-way function when m=pq generated randomly (p, q both large primes)