
Sets and Relations 

Lecture 8



Sets: Basics
Unordered collection of “elements”


e.g.: Z, R (infinite sets), Ø (empty set), {1, 2, 5}, ...


Will always be given an implicit or explicit universe (universal set) 
from which the elements come


(Aside: In developing foundations of mathematics, often one 
starts from “scratch”, using only set theory to create the 
elements themselves)


Set membership: e.g. 0.5 ∈ R, 0.5 ∉ Z, Ø ∉ Z


Set inclusion: e.g.  Z, ⊆ R, Ø ⊆ Z


Set operations: complement, union, intersection, difference



Set Operations

S̅

S ∩ T

S - T

S ∪ TS

T



Sets as Predicates

Given predicate can define the set of elements for which it holds

WingedSet = { x | Winged(x) } = {J’wock, Flamingo}

FliesSet = { x | Flies(x) } = {J’wock, Flamingo}

PinkSet = { x | Pink(x) } = {Flamingo}


Given set, can define a corresponding predicate too  
e.g. given set Club = {Alice, Flamingo}. Then, define predicate 
inClub(x) s.t. inClub(x) = True iff x ∈ Club

x Winged(x) Flies(x) Pink(x)

Alice FALSE FALSE FALSE

Jabberwock TRUE TRUE FALSE

Flamingo TRUE TRUE TRUE

inClub(x)

TRUE

FALSE

TRUE



Binary operators

Set Operations

S complement

Symbol: S̅   


inS̅(x) ≡ ¬inS(x)  

S union T

Symbol: S∪T


inS∪T(x)  
  ≡ inS(x) ∨ inT(x)

 

S intersection T

Symbol: S ∩ T


inS∩T(x)  
  ≡ inS(x) ∧ inT(x)


 

S difference T

Symbol: S - T


Unary operator
Binary operator. 

Creates a new proposition 
out of two propositions

Binary operators

inS-T(x)  
≡ inS(x) ∧ ¬inT(x)  

≡ inS(x) ↛ inT(x))

Binary operators

Note: Notation inS(x) used only to explicate the connection 
with predicate logic. Always write x∈S instead.

S symmetric diff. T

Symbol: S Δ T


inSΔT(x)  
≡ inS(x) ⊕ inT(x)

Binary operator. 
Creates a new proposition 
out of two propositions

Binary operatorsAssociative

S-T = S∩T̅ 



x∈S̅ ∪̅̅ T̅̅ ≡ ¬(x∈S∪T)  

≡ ¬(x∈S ∨ x∈T) ≡ ¬(x∈S) ∧ ¬(x∈T) 

≡ x∈S̅ ∧ x∈T̅ ≡ x∈S̅∩T̅

S̅ ∪̅̅ T̅̅ = S̅ ∩ T̅  
 

 

 

 

S̅ ∩̅̅ T̅̅ = S̅ ∪ T̅ 

De Morgan’s Laws

S ∪ T

TS

x∈S̅ ∩̅̅ T̅̅ ≡ ¬(x∈S∩T)  

≡ ¬(x∈S ∧ x∈T) ≡ ¬(x∈S) ∨ ¬(x∈T) 

≡ x∈S̅ ∨ x∈T̅ ≡ x∈S̅∪T̅  

S ∩ T

S̅ ∪ T̅S̅ ∩ T̅

S̅ T̅ 



Distributivity

R ∩ (S ∪ T)  = (R ∩ S) ∪ (R ∩ T)  
 

 

 

R ∪ (S ∩ T)  = (R ∪ S) ∩ (R ∪ T)

x ∈ R∩(S∪T) ≡  

≡ x∈R ∧ (x∈S ∨ x∈T) ≡ (x∈R ∧ x∈S) ∨ (x∈R ∧ x∈T) 

≡ x∈ (R∩S) ∪ (R∩T)

x ∈ R∪(S∩T) ≡  

≡ x∈R ∨ (x∈S ∧ x∈T) ≡ (x∈R ∨ x∈S) ∧ (x∈R ∨ x∈T) 

≡ x∈ (R∪S) ∩ (R∪T)



Set Inclusion

PinkSet ⊆ FliesSet = WingedSet


S ⊆ T same as the proposition ∀x  x∈S → x∈T


S ⊇ T same as the proposition ∀x  x∈S ← x∈T


S = T  same as the proposition ∀x  x∈S ↔ x∈T

x Winged(x) Flies(x) Pink(x)

Alice FALSE FALSE FALSE

Jabberwock TRUE TRUE FALSE

Flamingo TRUE TRUE TRUE



Set Inclusion

S ⊆ T same as the proposition ∀x  x∈S → x∈T


If S = Ø, and T any arbitrary set, S ⊆ T


∀x,  vacuously we have x∈S → x∈T


If S⊆T and T⊆R, then S⊆R


Consider arbitrary x∈S. Since S⊆T, x∈T. Then since T⊆R, x∈R.


S ⊆ T ⟷ T̅ ⊆ S̅


∀x  x∈S → x∈T  ≡  ∀x  x∉T → x∉S  (contrapositive)  

                     ≡  ∀x  x∈T̅ → x∈S̅ 

If no such x, already done



Proving Set Equality

To prove S = T, show S ⊆ T and T ⊆ S


e.g., L(a,b) = { x : ∃u,v ∈ Z  x=au+bv } 

      M(a,b) = { x : ( gcd(a,b) | x ) }


Recall Claim: L(a,b) = M(a,b)


Proof in two parts:


L(a,b) ⊆ M(a,b) : i.e., ∀x∈Z  x∈ L(a,b) → x∈ M(a,b)


M(a,b) ⊆ L(a,b) : i.e., ∀x∈Z  x∈ M(a,b) → x∈ L(a,b)

Let x=au+bv. 
g|a, g|b ⇒ g|x 

First show that  
g∈L(a,b) (as the 

smallest +ve element 
in L(a,b)) 

 

Let x=ng. But 
g=au+bv ⇒ x=au’+bv’



Inclusion-Exclusion
|S| + |T| counts every element that is in S or in T


But it double counts the number of elements that are in both: 
i.e., elements in S∩T


So, |S|+|T| = |S∪T| + |S∩T|


Or, |S∪T| = |S| + |T| - |S∩T|


|R∪S∪T| = |R|+|S|+|T| - |R∩S| - |S∩T| - |T∩R| + |R∩S∩T|


|R∪S∪T| = |R| + |S∪T| - |R∩(S∪T)|  
          = |R| + |S∪T| - |(R∩S)∪(R∩T)|  
          = |R| + |S| + |T| - |S∩T|  
            -( |R∩S| + |R∩T| - |R∩S∩T| )

◆ ◆
◆◆

◆
◆ ◆

S T

◆ ◆
◆◆

◆◆

◆

S T

R◆



Cartesian Product
S × T = { (s,t) | s∈S and t∈T }


(S= Ø ∨ T= Ø) ↔ S × T = Ø


|S × T| = |S|⋅|T|


R × S × T = { (r,s,t) | r∈R, s∈S and t∈T }


Not the same as (R × S) × T (but “essentially” the same)


(A∪B) × C = A×C ∪ B×C.  Also, (A∩B) × C = A×C ∩ B×C


(A∪B) × (C∪D) = A×(C∪D) ∪ B×(C∪D) = A×C ∪ A×D ∪ B×C ∪ B×D


                   ____

Complement: S×T  = ?


S̅×T̅ ∪ S̅×T ∪ S×T̅ 



Question

Let S, T ⊆ Z. Pick the best choice  

 

   A.  S ⊆ S × T  
   B.  S ∩ T ⊆ S × T  
   C.  S ∪ T ⊆ S × T  
   D.  S ⊆ S × T  ↔  S = Ø  

   E.  None of the above

1

USRT



Relations



Relations: Basics
A relation between elements in a set S is technically a subset of 
S×S, namely the pairs for which the relation holds


Or a predicate over the domain S×S


e.g. Likes(x,y)


Likes = { (Alice,Alice),  
           (Alice, Flamingo),  
           (J’wock,J’wock),  
           (Flamingo,Flamingo) }


More common notation:  
x Likes y


or, x⊏y, x ≥ y, x~y, xLy, ...

x,y Likes(x,y)

Alice, Alice TRUE

Alice, Jabberwock FALSE

Alice, Flamingo TRUE

Jabberwock, Alice FALSE

Jabberwock, Jabberwock TRUE

Jabberwock, Flamingo FALSE

Flamingo, Alice FALSE

Flamingo, Jabberwock FALSE

Flamingo, Flamingo TRUE



Relational Database

Queries to the DB are set/logical operations


 SELECT x  
 FROM Likes  
 WHERE y=‘Alice’ OR y=‘Flamingo’


{ x | (x,Alice) ∈ Likes } ∪ { x | (x,Flamingo) ∈ Likes }

x y Likes(x,y)

Alice

Alice TRUE

Jabberwock FALSE

Flamingo TRUE

Jabberwock

Alice FALSE

Jabberwock TRUE

Flamingo FALSE

Flamingo

Alice FALSE

Jabberwock FALSE

Flamingo TRUE

Likes

x y
Alice Alice

Alice Flamingo

Jabberwock Jabberwock

Flamingo Flamingo

Relational DB Table

Set
s &

 Re
lati
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in a
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What is a Relation? 
Many ways to look at it!

R ⊆ S × S 

a set of 
ordered-pairs

{ (a,b) | a⊏b }

Boolean matrix, 
Ma,b = 1 iff a⊏b


(directed) graph 
 

 

1 0 1

0 1 0

0 0 1

A J F

A

J

F A F

J

{ (A,A), (A,F),  
(J,J), (F,F) }



(Ir)Reflexive Relations
Reflexive  (e.g. Knows, ≤)


The kind of relationship that everyone has with 
themselves


Irreflexive  (e.g. Gave birth to, ≠)


The kind that nobody has with themselves


Neither  (e.g. is a prime factor of)


Some, but not all, have this relationship  
with themselves

All of diagonal included All self-loops

None of it

No self-loops



(Anti)Symmetric Relations
Symmetric  (e.g. sits next to)


The relationship is reciprocated


Anti-symmetric (e.g. Parent of, divides (in Z+), < )


No reciprocation (except possibly with self)


Neither  (e.g. in the “circle” of)


Reciprocated in some pairs (with distinct members) 
and only one-way in other pairs


Both (e.g., =)


Each one related only to self (if at all)

symmetric matrix
self-loops & 
bidirectional 
edges only

no  
bidirectional 

edges

some  
bidirectional, 

some 
unidirectional 

no edges except 
self-loops 



Transitive Relations 
Transitive (e.g., Ancestor of, subset of, divides, ≤)


if a is related to b and b is related to c,  
then  a is related to c 
 

 

“Transitive closure” of the relation is same as itself


Intransitive: Not transitive

if there is a “path” 
from a to z, then 
there is edge (a,z)


