Sets and Relations

Lecture 8

Sets: Basics

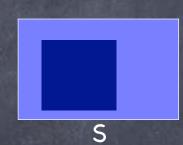
Our Unordered collection of "elements"

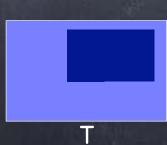
Will always be given an implicit or explicit universe (universal set) from which the elements come

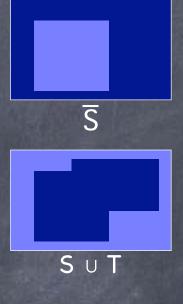
(Aside: In developing foundations of mathematics, often one starts from "scratch", using only set theory to create the elements themselves)

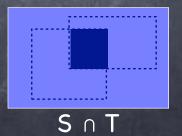
- a Set membership: e.g. 0.5 ∈ \mathbb{R} , 0.5 ∉ \mathbb{I} , Ø ∉ \mathbb{I}
- Set inclusion: e.g. \mathbb{I} , ⊆ \mathbb{R} , $\emptyset \subseteq \mathbb{I}$
- Set operations: complement, union, intersection, difference

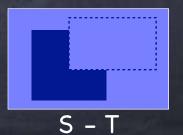
Set Operations











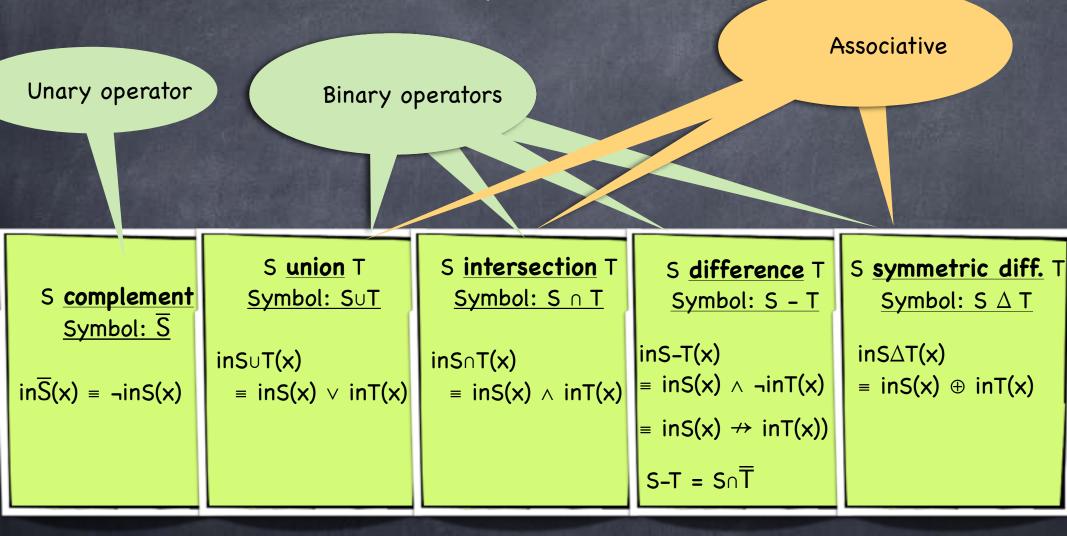
Sets as Predicates

×	Winged(x)	Flies(x)	Pink(x)	inClub(x)
Alice	FALSE	FALSE	FALSE	TRUE
Jabberwock	TRUE	TRUE	FALSE	FALSE
Flamingo	TRUE	TRUE	TRUE	TRUE

Given predicate can define the set of elements for which it holds
WingedSet = { x | Winged(x) } = {J'wock, Flamingo}
FliesSet = { x | Flies(x) } = {J'wock, Flamingo}
PinkSet = { x | Pink(x) } = {Flamingo}

Ø Given set, can define a corresponding predicate too
 e.g. given set Club = {Alice, Flamingo}. Then, define predicate
 inClub(x) s.t. inClub(x) = True iff x ∈ Club

Set Operations



Note: Notation inS(x) used only to explicate the connection with predicate logic. Always write $x \in S$ instead.

De Morgan's Laws

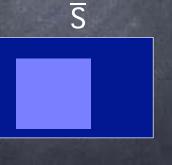
SUT = S ∩ T

S ∩ T

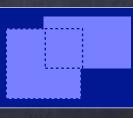
Ŧ

Т

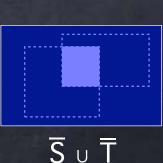
S $\overline{\Pi} = \overline{S} \cup \overline{T}$ X $\overline{\in} \overline{S} \cap \overline{T} = \neg(X \in S \cap T)$ = $\neg(X \in S \land X \in T) = \neg(X \in S) \lor \neg(X \in T)$ = $X \in \overline{S} \lor X \in \overline{T} = X \in \overline{S} \cup \overline{T}$



S U T



 $\overline{S} \cap \overline{T}$



Distributivity

R ∩ (S ∪ T) = (R ∩ S) ∪ (R ∩ T) X ∈ R∩(S∪T) = x∈R ∧ (x∈S ∨ x∈T) = (x∈R ∧ x∈S) ∨ (x∈R ∧ x∈T) x∈ (R∩S) ∪ (R∩T) R ∪ (S ∩ T) = (R ∪ S) ∩ (R ∪ T)

x ∈ Ru(S∩T) =
 $= x∈R \lor (x∈S \land x∈T) = (x∈R \lor x∈S) \land (x∈R \lor x∈T)$ $= x∈ (R∪S) \cap (R∪T)$

Set Inclusion

×	Winged(x)	Flies(x)	Pink(x)
Alice	FALSE	FALSE	FALSE
Jabberwock	TRUE	TRUE	FALSE
Flamingo	TRUE	TRUE	TRUE

Ø PinkSet ⊆ FliesSet = WingedSet

• $S \subseteq T$ same as the proposition $\forall x \ x \in S \rightarrow x \in T$ • $S \supseteq T$ same as the proposition $\forall x \ x \in S \leftarrow x \in T$ • S = T same as the proposition $\forall x \ x \in S \leftrightarrow x \in T$

Set Inclusion

• S \subseteq T same as the proposition $\forall x \ x \in S \rightarrow x \in T$ If S = Ø, and T any arbitrary set, S ⊆ T
T $\forall x, vacuously we have x \in S \rightarrow x \in T$ If no such x, already done If S⊆T and T⊆R, then S⊆R Onsider arbitrary x∈S. Since S⊆T, x∈T. Then since T⊆R, x∈R. \diamond S \subseteq T \longleftrightarrow $\overline{\mathsf{T}} \subseteq \overline{\mathsf{S}}$ $= \forall x \ x \in \overline{T} \to x \in \overline{S}$

Proving Set Equality

To prove S = T, show S \subseteq T and T \subseteq S $M(a,b) = \{ x : (gcd(a,b) | x) \}$ Let x=au+bv. gla, glb \Rightarrow glx Proof in two parts:

First show that g∈L(a,b) (as the smallest +ve element in L(a,b))

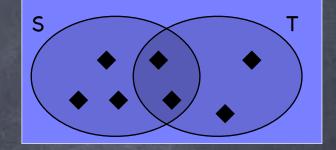
Let x=ng. But $q=au+bv \Rightarrow x=au'+bv'$

Inclusion-Exclusion

S |S + |T counts every element that is in S or in T

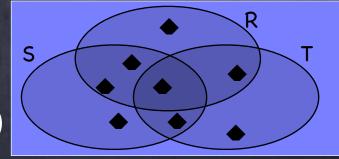
But it double counts the number of elements that are in both: i.e., elements in SnT

So, |S|+|T| = |S∪T| + |S∩T|



 $|R \cup S \cup T| = |R| + |S| + |T| - |R \cap S| - |S \cap T| - |T \cap R| + |R \cap S \cap T|$

[RUSUT] = [R] + [SUT] - [Rn(SUT)] = [R] + [SUT] - [(RnS)U(RnT)] = [R] + [S] + [T] - [SnT] -([RnS] + [RnT] - [RnSnT])



Cartesian Product

S × T = { (s,t) | s∈S and t∈T }
(S=Ø ∨ T=Ø) ↔ S × T = Ø
|S × T| = |S|·|T|
R × S × T = { (r,s,t) | r∈R, s∈S and t∈T }
Not the same as (R × S) × T (but "essentially" the same)
(A∪B) × C = A×C ∪ B×C. Also, (A∩B) × C = A×C ∩ B×C

 $(A \cup B) \times (C \cup D) = A \times (C \cup D) \cup B \times (C \cup D) = A \times C \cup A \times D \cup B \times C \cup B \times D$

Complement: $\overline{S \times T} = ?$ S $\overline{S} \times \overline{T} \cup \overline{S} \times T \cup S \times \overline{T}$

Question

A. $S \subseteq S \times T$ B. $S \cap T \subseteq S \times T$ C. $S \cup T \subseteq S \times T$ D. $S \subseteq S \times T \leftrightarrow S = \emptyset$ E. None of the above

Relations

Relations: Basics

A relation between elements in a set S is technically a subset of S×S, namely the pairs for which the relation holds

Or a predicate over the domain S×S

ø e.g. Likes(x,y)

Likes = { (Alice,Alice), (Alice, Flamingo), (J'wock,J'wock), (Flamingo,Flamingo) }

More common notation:
 x Likes y

or, x□Y, x ≥ y, x~y, xLy, ...

х,у	Likes(x,y)	
Alice, Alice	TRUE	
Alice, Jabberwock	FALSE	
Alice, Flamingo	TRUE	
Jabberwock, Alice	FALSE	
Jabberwock, Jabberwock	TRUE	
Jabberwock, Flamingo	FALSE	
Flamingo, Alice	FALSE	
Flamingo, Jabberwock	FALSE	
Flamingo, Flamingo	TRUE	

Relational Database

×	У	Likes(x,y)
Alice	Alice	TRUE
	Jabberwock	FALSE
	Flamingo	TRUE
Jabberwock	Alice	FALSE
	Jabberwock	TRUE
	Flamingo	FALSE
Flamingo	Alice	FALSE
	Jabberwock	FALSE
	Flamingo	TRUE

Sets & Relations

Relational DB Table

Likes		
×	У	
Alice	Alice	
Alice	Flamingo	
Jabberwock	Jabberwock	
Flamingo	Flamingo	

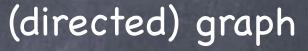
Queries to the DB are set/logical operations

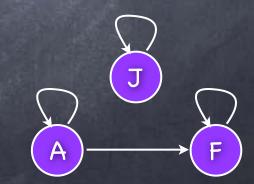
- SELECT X
 FROM Likes
 WHERE y='Alice' OR y='Flamingo'

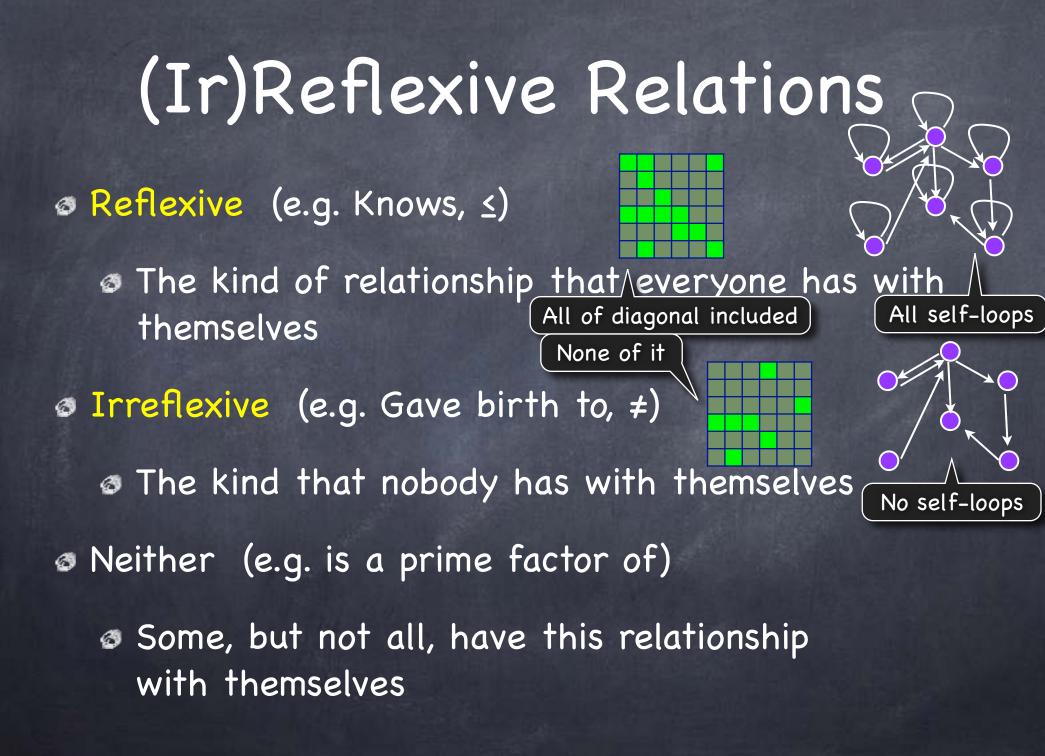
What is a Relation? Many ways to look at it!

 $R \subseteq S \times S$ a set of ordered-pairs { (a,b) | a \subset b }

{ (A,A), (A,F), (J,J), (F,F) } Boolean matrix, $M_{a,b} = 1$ iff $a \sqsubset b$







(Anti)Symmetric Relations Symmetric (e.g. sits next to) The relationship is reciprocated symmetric matrix self-loops & Anti-symmetric (e.g. Parent of, divides (in \mathbb{Z}^+), < bidirectional edges only So reciprocation (except possibly with self) no bidirectional edges Neither (e.g. in the "circle" of) Reciprocated in some pairs (with distinct <u>members</u>) some and only one-way in other pairs bidirectional. some unidirectional Ø Both (e.g., =) Each one related only to self (if at all) no edges except self-loops

Transitive Relations

Transitive (e.g., Ancestor of, subset of, divides, ≤)

If <u>a is related to b</u> and <u>b is related to c</u>, then <u>a is related to c</u>

> if there is a "path" from a to z, then there is edge (a,z)

Transitive closure" of the relation is same as itself
 Intransitive: Not transitive