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Reflexive:  
All self-loops

 

 

 

 

Irreflexive:  
No self-loops

 

 

 

 

Symmetric: 
Only self-loops & 
bidirectional edges

 

 

 

 

Anti-symmetric: 
No bidirectional 

edges

 

 

 

 

Transitive: 
Path from a to b 
implies edge (a,b)

The complete relation R = S × S is reflexive, symmetric and transitive


Reflexive closure of R: Smallest relation R’ ⊇ R s.t. R’ is reflexive  
Symmetric closure of R: Smallest relation R’ ⊇ R s.t. R’ is symmetric 
Transitive closure of R: Smallest relation R’ ⊇ R s.t. R’ is transitive


Each of these is unique



Question

Let ⊏ be the empty relation (i.e., ∀a,b  ¬(a⊏b)).  

Choose the best option.  

 

   A.  ⊏ is transitive 

   B.  ⊏ is irreflexive  

   C.  ⊏ is symmetric 

   D.  All of the above  

   E.  Some of the above (but not all)
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All. Also, anti-symmetric. 



Question

Let ⊏ be the relation over integers defined as 

x ⊏ y if |x-y| ≤ 10. Choose the best option.  

 

   A.  ⊏ is transitive 

   B.  ⊏ is reflexive  

   C.  ⊏ is symmetric 

   D.  All of the above  

   E.  Some of the above (but not all)
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Not transitive



Equivalence Relation
A relation that is reflexive, symmetric and transitive


e.g. is a relative, has the same last digit, is congruent mod 7, … 


Claim: Let Eq(x) ≜ {y|x～y}. If Eq(x) ∩ Eq(y) ≠ Ø, then Eq(x) = Eq(y).


Let z∈Eq(x)∩Eq(y). ∀w∈Eq(x), x～w. Also, x～z ⇒ w～z.  

Also, y～z ⇒ y～w ⇒ w ∈ Eq(y). i.e., Eq(x) ⊆ Eq(y).


The Equivalence classes partition the domain

Square blocks along the 
diagonal, after sorting 

the elements by 
equivalence class

“Cliques” for 
each class

P1,..,Pt ⊆ S 
s.t.  

P1∪..∪Pt = S 
Pi∩Pj = Ø



Question

Which one(s) represent(s) equivalence relation(s)  
 

 

 

             R1                         R2                       R3  

  
   A.  R1 and R3  

   B.  R1 only  
   C.  R2 only  
   D.  R3 only  
   E.  None of the above

not reflexivenot transitive
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Posets
Partial order: a transitive, anti-symmetric and reflexive 
relation


e.g. ≤ for integers, divides for integers, ⊆ for sets, 
“containment” for line-segments


Partial: Some pair may be “incomparable”


Transitive and anti-symmetric → “acyclic”


Partially ordered set (a.k.a Poset):  
a set and a partial order over it

Check: 
- Anti-symmetric (no bidirectional  
                                 edges),  
- Transitive, 
- Reflexive (all self-loops)

S1={0,1,2,3}, S2={1,2,3,4}, 
S3={1,2}, S4={3,4},  

S5 = {2}.  
Relation ⊆

Strict partial order: 
irreflexive, rather than 

reflexive

Cyclic: Some node s.t. 
you can leave it through 
an edge (not self-loop), 

move through some 
edges, and return to the 

node



Posets
Maximal & minimal elements of a poset (S, ≼)


x∈S is maximal if ∄y∈S-{x} s.t. x≼y

x∈S is minimal if ∄y∈S-{x} s.t. y≼x

Need not exist (e.g., in (Z,≤)). Need not be unique when 

it exists (e.g., (S,⊆), where S is the set of all subsets 
of integers that have at least one odd number)


Greatest element in T⊆S: x∈T s.t. ∀y∈T, y≼x 
Least element in T⊆S: x∈T s.t. ∀y∈T, x≼y


Need not exist, even if T finite. Unique when it exists.

Upper Bound for T ⊆ S: x s.t. ∀y∈T, y≼x 
Lower Bound for T ⊆ S: x s.t. ∀y∈T, x≼y 

Least Upper Bound for T: Least in {x| x u.b. for T}  
Greatest Lower Bound for T: Greatest in {x| x l.b. for T}

Do exist in finite posets  
(Prove by induction on |S|)



An Example
Let a ⊏ b iff b/a is prime (with Z+ as the domain)


Let ≼ be the transitive and reflexive closure  of ⊏


a ≼ b iff a|b


Divisibility poset: (Z+ ,≼)


When is c a lower bound  
for T={a,b}? c≼a and c≼b.


c is a common divisor for {a,b}.


gcd(a,b) = greatest lower bound for {a,b} in this 
posey
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Total/Linear Order

In some posets every two elements are “comparable”: 
for {a,b}, either a⊑b or b⊑a


Can arrange all the elements in a line, with all 
possible right-pointing edges (plus, self-loops)  
 

 

 

If finite, has unique maximal and unique minimal 
elements (left and right ends)



Order Extension
A poset P’=(S,≤) is an extension of a poset P=(S,≼) if 
∀a,b∈S, a ≼ b → a ≤ b


Any finite poset can be extended to a total ordering 
(this is called topological sorting)


By induction on |S| 


Induction step: Remove a minimal element, extend 
to a total ordering, reintroduce the removed 
element as the minimum in the total ordering.


For infinite posets? The “Order Extension Principle” is 
typically taken as an axiom! (Unless an even stronger 
axiom called the “Axiom of Choice” is used)



Chains
C ⊆ S is called a chain if ∀ a,b ∈ C, either a≼b or b≼a


That is, (C,≼) is a total order


Every element a∈S belongs 
to some chain in which it is  
the maximum element  
(possibly just {a})


Height(a) = max length chain with a as the maximum


E.g., In “Divisibility poset,” height(1)=1, height(p)=2 for all 
primes p. For m=p1d1⋅…⋅ptdt (pi primes) height(m) = 1+Σi di

Finite if S is finite
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Anti-Chains
A ⊆ S is called an anti-chain if  
∀a,b∈A,   a≠b → neither a≼b nor b≼a


(A,≼) is the equality relation


Let Ah = { a | height(a)=h }


For every finite h, Ah is an  
anti-chain (possibly empty)


Otherwise, ∃a≠b, a≼b with height(a) = height(b) = h.  
height(a) = h ⇒ ∃chain C s.t. a=max(C) and |C|=h  
       ⇒ b∉C and C’=C∪{b} is a chain with b=max(C’)  
       ⇒ height(b) ≥ h+1 !

How?
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Anti-Chains
A ⊆ S is called an anti-chain if  
∀a,b∈A,   a≠b → neither a≼b nor b≼a


(A,≼) is the equality relation


Let Ah = { a | height(a)=h }


For every finite h, Ah is an  
anti-chain (possibly empty)

In a finite poset, since every element has a finite height, 
every element appears in some Ah: i.e., Ahs partition S


Mirsky’s Theorem: Least number of anti-chains needed 
to partition S is exactly the length of a longest chain
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Height of the poset


