
Functions 

Lecture 10



For each element in a universe (domain), a predicate assigns one of 
two values, True and False.


“Co-domain” is {True,False}


Functions: more general 
co-domains


f : A → B

A function maps each element  
in the domain to an element in  
the co-domain

To specify a function, should  
specify domain, co-domain  
and the “table” itself

pair∈AIW2 Likes(pair)

(Alice, Alice) TRUE

(Alice, Jabberwock) FALSE

(Alice, Flamingo) TRUE

(Jabberwock, Alice) FALSE

(Jabberwock, Jabberwock) TRUE

(Jabberwock, Flamingo) FALSE

(Flamingo, Alice) FALSE

(Flamingo, Jabberwock) FALSE

(Flamingo, Flamingo) TRUE
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Function
A function maps each element in the domain to an element 
in the co-domain


eg: Extent of liking, f: AIW2 → {0,1,2,3,4,5} 


Note: no empty slot,  
no slot with more than  
one entry


Not all values from the 
co-domain need be used


Image: set of values in the  
co-domain that do get used


For f:A→B, Im(f) ⊆ B s.t.  
Im(f) = { y∈B | ∃x∈A  f(x) = y }

x∈Domain f(x)∈Co-Domain

(Alice, Alice) 5

(Alice, Jabberwock) 1

(Alice, Flamingo) 4

(Jabberwock, Alice) 0

(Jabberwock, Jabberwock) 4

(Jabberwock, Flamingo) 0

(Flamingo, Alice) 1

(Flamingo, Jabberwock) 0

(Flamingo, Flamingo) 5



Function
A function maps each element in the domain to an element 
in the co-domain
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Function as a Relation
As a relation between domain & co-domain, Rf ∈ domain × co-domain  

Rf = { (x,f(x)) | x ∈ domain }


Special property of Rf:  every x has a unique y s.t. (x,y) ∈ Rf


Can be represented using a matrix


Convention: domain on the “x-axis”, co-domain on the “y-axis”


Every column has exactly one cell “switched on”
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Plotting a Function
When both domain and co-domain are numerical (or otherwise 
totally ordered), we often “plot” the function


Shows only part of domain/codomain when they are infinite 
(here f:Z→Z)
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Types of Functions
Function: every column has exactly one cell “on”


Onto Function (surjection): Every row has at least one cell “on”


One-to-One function (injection): Every row has at most one cell “on”


Bijection: Every row has exactly one cell “on”
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∀y ∃x f(x)=y

∀y∈Im(f) ∃! x∈A  f(x)=y



Question

Let f: N → N, g: R → R≥0 and h: N → R≥0 be defined as:  

f(x) = x2, g(x) = x2, h(x) = x2. Which ones are onto? 

 

   A.  f, g and h 

   B.  f and g  

   C.  only f 

   D.  only g 

   E.  None of the above

h not onto, since (say)  
2 ∈ Codomain(h) - Im(h)

g is onto (every non-negative 
real number has a square-root)

f not onto, since (say)  
 2 ∈ Codomain(f) - Im(f)

1



Injective Functions

A function f:A→B is one-to-one if ∀x,x’∈A  f(x)=f(x’) → x=x’


f : Z → Z defined as f(x)=x2 is not one-to-one


f : Z+ → Z+ defined as f(x)=x2 is one-to-one


f : Z → Z defined as f(x)=⌊x/5⌋  

is not one-to-one


f : Z → Z defined as f(x)=5x is one-to-one


In fact, any strictly increasing function is one-to-one


And, any strictly decreasing function too is one-to-one


One-to-one functions don’t lose any information


They are “invertible” x
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Composition
Composition of functions f and g: g○f : Domain(f) → Co-domain(g)


g○f(x) ≜ g(f(x))
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Composition

Defined only if Im(f) ⊆ Domain(g)


Typically, Domain(g) = Co-domain(f)


g○f : Domain(f) → Co-domain(g)


Im(g○f) ⊆ Im(g)

5

4

3

2

1

0

High

Medium

Low

(Alice, Alice)

(Alice, Jabberwock)

(Alice, Flamingo)

(Jabberwock, Alice)

(Jabberwock, Jabberwock)

(Jabberwock, Flamingo)

(Flamingo, Alice)

(Flamingo, Jabberwock)

(Flamingo, Flamingo)

f g

High

Medium

Low

(Alice, Alice)

(Alice, Jabberwock)

(Alice, Flamingo)

(Jabberwock, Alice)

(Jabberwock, Jabberwock)

(Jabberwock, Flamingo)

(Flamingo, Alice)

(Flamingo, Jabberwock)

(Flamingo, Flamingo)

g○f

Composition of functions f and g: g○f : Domain(f) → Co-domain(g)
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Injective ⟷ Invertible 
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One-to-one functions are invertible


Suppose f : A→B is one-to-one


Let g : B→A be defined as follows:  
for y∈Im(f), g(y)=x s.t. f(x)=y (well-defined)  
for y∉ Im(f), g(y) = some arbitrary element in A


Then g○f ≡ IdA, where IdA : A→A is the identity 
function over A


g need not be invertible 1
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f is said to be invertible if ∃g s.t. g○f ≡ Id 



One-to-one functions are invertible


And invertible functions are one-to-one


Suppose f : A→B is invertible


Let g : B→A be s.t. g○f ≡ Id


Now, for any x1,x2 ∈ A, if f(x1) = f(x2), then g(f(x1))=g(f(x2))


But g(f(x)) = Id(x) = x


Hence, ∀x1,x2 ∈ A, if f(x1)=f(x2), then x1=x2

f is said to be invertible if ∃g s.t. g○f ≡ Id 

Injective ⟷ Invertible 



Question
Suppose A, B are finite sets such that |A| < |B|.  

Suppose f : A → B. Then:  

 

   A.  f can be onto, but not one-to-one  

   B.  f can be one-to-one, but not onto  

   C.  f can neither be onto nor one-to-one  

   D.  f may be either onto or one-to-one, or both 

   E.  f may be either onto or one-to-one, but not both

Onto → |B| ≤ |A|
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Question
Suppose A, B are finite sets such that |A| > |B|.  

Suppose f : A → B. Then:  

 

   A.  f can be onto, but not one-to-one  

   B.  f can be one-to-one, but not onto  

   C.  f can neither be onto nor one-to-one  

   D.  f may be either onto or one-to-one, or both 

   E.  f may be either onto or one-to-one, but not both

Pigeonhole Principle  
|A| > |B| →          .  
f not one-to-one.  

 

One-to-one → |A|≤|B|
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Bijections

Bijection: both onto and one-to-one


Every row and every column has exactly one cell “on”


Every element in the co-domain has exactly one “pre-image”


If f : A→B, f-1 : B→A such that  
f-1○f : A→A and f○f-1 : B→B are  
both identity functions


Both f and f-1 are invertible,  
and the inverses are unique


(f-1) -1 = f


If A, B finite sets and there is a bijection f:A→B, then |A|=|B|


If A, B finite sets and |A|=|B| and f:A→B, then  
f is onto ≡ f in one-to-one ≡ f is a bijection
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Composition &  
 Onto/One-to-One

Composition “respects onto-ness”


If f and g are onto, g○f is onto as well


If g○f is onto, then g is onto


Composition “respects one-to-one-ness”


If f and g are one-to-one, g○f is one-to-one as well


If g○f is one-to-one, then f is one-to-one


Hence, composition respects bijections


If f and g are bijections then g○f is a bijection as well


If g○f is a bijection, then f is one-to-one and g is onto

With the convention  
Domain(g)=Co-Domain(f)
With the convention  

Domain(g)=Co-Domain(f)



Permutation of a string
To permute = to rearrange


e.g., π53214(hello) = lleoh


e.g., π35142(lleoh) = ehlol


Permutations are essentially bijections from the set of positions 
(here {1,2,3,4,5}) to itself


A bijection from any finite set to itself is called a permutation


Permutations compose to yield permutations (since bijections do so)


e.g., π35142 ○ π53214 = π21534
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