Counting

Lecture 11

How many Functions?

7 B

functions from A to B (finite): $|B|^{|A|} = |B| \cdot |B| \cdot ... \cdot |B|$ e.g. A={1,2} B={a,b,c}

How many One-to-One Functions?

one-to-one functions from A to B, where |A|=k and |B|=n

How many Functions?

- Suppose |A|=k, |B|=n
 - Say, A=[k] \triangleq {1,...,k} and B=[n] \triangleq {1,...,n}
- # functions from A to B: n^k

- e.g., number of ternary logical operators, op : {T,F}×{T,F}×{T,F}→{T,F} is 2⁸
- # one-to-one functions from A to B (assuming n≥k) is
 $P(n,k) = n \cdot (n-1) \cdot ... \cdot (n-k+1) = n! / (n-k)!$ [Note: 0! = 1]
 - Pigeonhole Principle: There is a one-to-one function from A to B only if |B|≥|A|. P(n,k) = 0 for k>n
- # bijections from A to B (only if |A|=|B|) is P(n,n) = n!
- # onto functions? A little more complicated. (Later)

Permutations

- Permutations refer to arrangements of, say, symbols in a string

 - A permutation of a <u>set of symbols</u> could be thought of as a function that assigns to each position a symbol (without repeating symbols)

_	1	2	3	4	5
	С	a	d	e	b

Bijection

Sometimes want to consider shorter strings obtained from the given string (without repeating symbols)

Combinations

- We can represent subsets as strings without repetitions
- But the same subset can be represented in multiple ways: <u>adc</u>, <u>cad</u>, ...
 - We know exactly how many ways
 - k! ways to write a subset of size k
- # k-symbol subsets of n-symbol alphabet
 # repetition-free strings of length k, divided by k!
 C(n,k) = P(n,k)/k! = n! / ((n-k)! · k!)

C(n,k)

For n,k∈ℕ, C(n,k) = n!/(k!(n-k)!) if k ≤ n, and 0 otherwise

- Selecting k out of n elements is the same as unselecting n-k out of n elements
- O C(n,0) = C(n,n) = 1

In particular, C(0,0) = 1
 (how many subsets of size 0 does Ø have?)

 $O C(n,0) + C(n,1) + ... + C(n,n-1) + C(n,n) = 2^n$

C(n,k)

C(n,k) is the coefficient of x^k in the expansion of (1+x)ⁿ
Fully expanding (1+x)ⁿ results in 2ⁿ terms
(1+x)·(1+x)·(1+x) = (1+x)·(1·1 + 1·x + x·1 + x·x) = 1·1·1 + 1·1·x + 1·x·1 + 1·x·x

+ $\mathbf{X} \cdot \mathbf{1} \cdot \mathbf{1}$ + $\mathbf{X} \cdot \mathbf{1} \cdot \mathbf{X}$ + $\mathbf{X} \cdot \mathbf{X} \cdot \mathbf{1}$ + $\mathbf{X} \cdot \mathbf{X} \cdot \mathbf{X}$

Each term is of the form ? ? ? where each ? is 1 or x

Coefficient of x^k = number of strings with exactly k x's out of the n positions = C(n,k)

• Note: coefficient of x^k in $(1+x) \cdot (... + ax^{k-1} + bx^k + ...)$ is a+b

C(n,k)

C(n,k) = C(n-1,k-1) + C(n-1,k) (where n,k ≥ 1)
 Easy derivation: Let |S|=n and a ∈ S.
 C(n,k) = # k-sized subsets of S containing a + # k-sized subsets of S not containing a

In fact, gives a <u>recursive definition</u> of C(n,k)

- Base case (to define for k≤n):
 C(n,0) = C(n,n) = 1 for all n∈ℕ
- Or, to define it for all (n,k)∈N×N
 <u>Base case</u>: C(n,0)=1, for all n∈N, and C(0,k)=0 for all k∈Z+

Question

How many bit strings of length 6 are there with more 1s than 0s?

Counting and Discounting

Ordered Bell Number: Number of weak orderings

- How many ways can 4 horses finish a race, if ties are possible?
 Only one position (all first): 1 way
 - Two positions, 1 & 2: Assign each horse 1 or 2 (2⁴ ways), but discount ones which use only one number (2 ways): 14 ways
 - Three positions, 1, 2 & 3: Assign each horse 1, 2 or 3, but discount ones which use only 2 numbers, and ones which use only one number: 3⁴ C(3,2)·14 C(3,1)·1 = 81-45=36
 - All 4 positions: 4! $(=4^{4}-4\cdot 36-6\cdot 14-4\cdot 1 = 256-232) = 24$
- 5 horses?
 - $1+(2^{5}-2)+(3^{5}-3\cdot 30-3\cdot 1)+(4^{5}-4\cdot 150-6\cdot 30-4\cdot 1)+5!=541$

Counting Onto Functions

How many onto functions from A to B, if |A|=k, |B|=n? $n^{k} - n (n-1)^{k} + C(n,2) (n-2)^{k} - ...$ Let's call it N(k,n) \odot Claim: N(k,n) = $\Sigma_{i=0 \text{ to } n}$ (-1)ⁱ C(n,i) (n-i)^k Inclusion-exclusion to count $|U_i|$ {f:A→S_i} So Number of combinations of the form $\{i_1, \dots, i_t\} = C(n, t)$ $O[U_i {f:A \rightarrow S_i}] = n (n-1)^k - C(n,2) (n-2)^k + C(n,3) (n-3)^k - ...$ • $N(k,n) = n^{k} - \sum_{i=1 \text{ to } n} (-1)^{i+1} C(n,i) (n-i)^{k} = \sum_{i=0 \text{ to } n} (-1)^{i} C(n,i) (n-i)^{k}$

Counting Partitions

Secall: {P₁,...,P_d} is a partition of A if A = P₁ U ... U P_d, for all distinct i, j, P_i ∩ P_j = Ø, and no P_i is empty

Stirling number

of the 2nd kind

How many partitions does a set A of k elements have?

S(k,n): #ways can A be partitioned into exactly n parts

Suppose we labeled the parts as 1,...,n

Such a partition is simply an onto function from A to [n]

N(k,n) ways

But in a partition, the parts are not labelled. With labelling, each partition was counted n! times.

S(k,n) = N(k,n)/n!

Balls and Bins

How many ways can I throw k labelled balls into n labelled bins?

- Number of functions $f:A \rightarrow B$, where |A|=k, |B|=n (n^k)
- How many ways can I throw k labelled balls into n labelled bins so that no bin is empty?
 - Number of onto functions, N(k,n)
- How many ways can I throw k labelled balls into n <u>unlabelled</u> bins so that no bin is empty?

Number of partitions, S(k,n)

How many ways can I throw k <u>unlabelled</u> items (balls) into n <u>labelled</u> bins?

Combinations With Repetitions

- How many ways can I throw k (indistinguishable) balls into n (distinguishable) bins?
- A <u>multi-set</u> (a.k.a "bag") is like a set, but allows an element in it to occur one or more times
 - Order doesn't matter
- How many multi-sets of size k are there, with elements coming from a set of size n?
 - e.g., how many ways can I place orders for 10 books from a catalog of 20 books (I may order multiple copies of the same book)?
 - Balls and bins: bins are the catalog titles, and balls are my orders

Combinations With Repetitions

- How many ways can I throw k (indistinguishable) balls into n (distinguishable) bins?
- Each such combination can be represented using n-1 "bars" interspersed with k "stars"
 - e.g., 3 bins, 7 balls: * * *
 Or,
 A * * * * * * * (first two bins are empty)
 Number of such combinations = ?
 (n-1)+k places. Choose n-1 places for bars, rest get stars
 C (n+k-1, k) ways

Combinations With Repetitions

 How many solutions are there for the equation x+y+z = 11, with x,y,z ∈ Z+?

3 bins, 11 balls: But no bin should be empty!

First, throw one ball into each bin

Now, how many ways to throw the remaining balls into 3 bins?

3 bins, 8 balls

2 bars and 8 stars: e.g., \star $\star \star \star \star \star \star \star \star \star \star$

 \oslash C(10,2) solutions

Summary

- O Number of functions f:A→B, where |A|=k, |B|=n (k labelled balls into n labelled bins): n^k
- Number of one-to-one functions (k labelled balls into n labelled bins, so that no bin has two balls): P(n,k)
- Number of combinations of n items from A (k unlabelled balls into n labelled bins, so that no bin has two balls): C(n,k)
- Number of onto functions (k labelled balls into n labelled bins, so that no bin is empty): N(k,n)
- Number of partitions of A into n parts (k labelled balls into n unlabelled bins, so that no bin is empty): S(k,n)
- Number of multiset subsets of B of size k (k unlabelled balls into n labelled bins): C(n+k-1,k)
- How many ways can I throw k <u>unlabelled</u> items (balls) into n <u>unlabelled</u> bins? Partition function, p_k(n) (complicated!)