
Graphs
Lecture 13



Graphs
What is “connected” to what


Many things we deal with in computer science are graphs


Networks: humans, communication, computation, 
transportation, knowledge
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Simple Graphs

A simple graph G = (V,E), where


E ⊆ { {a,b} | a,b ∈ V, a≠b }


V is the set of nodes E the set of edges


V non-empty and finite (for us)


Note: the “drawing” is not part of the graph, only the 
connectivity is



Simple Graphs
Recall graphs for relations: directed graphs with self-loops


Each element in the domain forms a node


Each ordered pair (a,b) in the relation forms an edge


Edges of the form (a,a) are “self-loops”


A simple graph is a symmetric, irreflexive relation


Symmetric: An undirected edge {a,b} can be modelled as two 
directed edges (a,b) and (b,a)


Irreflexive: No self-loops


In a “non-simple” graph, can allow more than one edge between 
any pair (multigraphs), or more generally, allow weights on 
edges (weighted graphs)



Examples
Complete graph Kn : n nodes, with all possible edges between them


E = { {a,b} | a,b ∈ V, a≠b }

# edges, |E| = n(n-1)/2


Cycle Cn : V = { v1,...,vn }, E = { {vi,vj} | j=i+1 or (i=1 and j=n) }


Bipartite graph : V = V1 ∪ V2, where V1 ∩ V2 = Ø (i.e., a partition), 
and no edge between two nodes in the same “part”:  
E ⊆ { {a,b} | a∈V1, b∈V2 }


e.g., Cn where n is even


Complete bipartite graph Kn1,n2 : Bipartite graph, with |V1|=n1, |V2|=n2 
and E = { {a,b} | a∈V1, b∈V2 }


# edges, |E| = n1⋅n2


Later: Hypercube, Trees



Graph Isomorphism
G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is a bijection 
f:V1 → V2 such that {u,v} ∈ E1 iff {f(u),f(v)} ∈ E2  

 

 

 

 

 

 

Computational problem: check if two graphs (given as adjacency 
matrices) are isomorphic


Can rule out if certain “invariants” are not preserved (e.g. |V|,|E|)


In general, no “efficient” algorithm known, when graph is large


Some believe no efficient algorithm exists!
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Degree of a node

Given a simple graph G = (V,E), for each node v∈V, the 
degree of v is the number of edges incident on v  
 

 

Formally, deg(v) = | { u : {u,v} ∈ E } |


Counting edges in two different ways: 2 ⋅ |E| = ∑v∈V deg(v)


Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)


Degree sequence invariant under isomorphism

Note: Definition restricted 
to simple graphs



Question

A graph is said to be d-regular if all nodes have 
degree d.  How many edges are there in a 3-regular 
graph with 6 nodes?  
 

       A.  Such a graph doesn’t exist  
       B.  18  
       C.  12 
       D.  9 
       E.  It depends on the graph 
 

e.g., K3,3


n⋅d/2 (unless n & d odd)
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A subgraph of G = (V,E) is a graph G’ = (V’,E’) such that 
V’ ⊆ V and E’ ⊆ E 
 

 

 

 

 

To get a subgraph: Remove zero or more vertices, remove 
all edges incident on them, and further remove zero or 
more edges


Induced subgraph: omit the last step

Subgraphs



Walks, Paths & Cycles
A walk (of length k, k ≥ 0) from node a to node b is a 
sequence of nodes (v0, v1, ... , vk) such that


v0 = a, vk = b


for all i ∈ {0,...,k-1}, the edge {vi,vi+1} ∈ E


Length is the number of edges in a walk. Could be 0.


If a walk has no node repeating, then it is called a path


If a walk of length k≥3 has v0=vk, but no other two 
nodes are equal, then it is called a cycle


Note: we require a cycle to be of length at least 3


A graph is acyclic if it has no cycles (i.e., no Ck is a 
subgraph of G)



Connectivity

Given a graph G, whether there is a path between two nodes 
u and v is an important question regarding G


u is said to be connected to v if there is such a path


Prove: u connected to v iff there is a walk from u to v 


Relation Connected(u,v) is an equivalence relation


Reflexive, Symmetric and Transitive 


Equivalence classes of this relation are called the 
connected components of G

Walks can be spliced 
together to get walks



Distance
Shortest walk between nodes u and v is always a path


Shortest path is of great interest in many applications


e.g., nodes correspond to locations on a map and edges 
are roads, optic fibers etc.


Also, graph can be used to model probabilistic processes, 
with shortest path indicating the most likely outcome


Length of the shortest path between u and v is called the 
distance between u and v (∞ if no path) 
                    


Diameter is the largest distance in a graph (can be ∞)  

In many applications, the 
edges on the graph will have 
“lengths”. For us, typically all 
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via 
contradiction

Hence ∃ walk 
→ ∃ path


