
Graphs
Lecture 13

Graphs
What is “connected” to what

Many things we deal with in computer science are graphs

Networks: humans, communication, computation,
transportation, knowledge

Courtesy: Microsoft Academic Search

Courtesy: Digital Humanities Specialist @ Stanford

C
ou

rt
es

y:
 c

ab
le

m
ap

.in
fo

Courtesy: New Scientist

C
ou

rt
es

y:
gi

ga
fl
op

.d
em

on
.c
o.
uk

Simple Graphs

A simple graph G = (V,E), where

E ⊆ { {a,b} | a,b ∈ V, a≠b }

V is the set of nodes E the set of edges

V non-empty and finite (for us)

Note: the “drawing” is not part of the graph, only the
connectivity is

Simple Graphs
Recall graphs for relations: directed graphs with self-loops

Each element in the domain forms a node

Each ordered pair (a,b) in the relation forms an edge

Edges of the form (a,a) are “self-loops”

A simple graph is a symmetric, irreflexive relation

Symmetric: An undirected edge {a,b} can be modelled as two
directed edges (a,b) and (b,a)

Irreflexive: No self-loops

In a “non-simple” graph, can allow more than one edge between
any pair (multigraphs), or more generally, allow weights on
edges (weighted graphs)

Examples
Complete graph Kn : n nodes, with all possible edges between them

E = { {a,b} | a,b ∈ V, a≠b }

edges, |E| = n(n-1)/2

Cycle Cn : V = { v1,...,vn }, E = { {vi,vj} | j=i+1 or (i=1 and j=n) }

Bipartite graph : V = V1 ∪ V2, where V1 ∩ V2 = Ø (i.e., a partition),
and no edge between two nodes in the same “part”:  
E ⊆ { {a,b} | a∈V1, b∈V2 }

e.g., Cn where n is even

Complete bipartite graph Kn1,n2 : Bipartite graph, with |V1|=n1, |V2|=n2
and E = { {a,b} | a∈V1, b∈V2 }

edges, |E| = n1⋅n2

Later: Hypercube, Trees

Graph Isomorphism
G1 = (V1,E1) and G2 = (V2,E2) are isomorphic if there is a bijection
f:V1 → V2 such that {u,v} ∈ E1 iff {f(u),f(v)} ∈ E2  

 

 

 

 

 

 

Computational problem: check if two graphs (given as adjacency
matrices) are isomorphic

Can rule out if certain “invariants” are not preserved (e.g. |V|,|E|)

In general, no “efficient” algorithm known, when graph is large

Some believe no efficient algorithm exists!

a b

cd

1

24

3

a
b
c
d

1
2
3
4

Degree of a node

Given a simple graph G = (V,E), for each node v∈V, the
degree of v is the number of edges incident on v  
 

 

Formally, deg(v) = | { u : {u,v} ∈ E } |

Counting edges in two different ways: 2 ⋅ |E| = ∑v∈V deg(v)

Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)

Degree sequence invariant under isomorphism

Note: Definition restricted
to simple graphs

Question

A graph is said to be d-regular if all nodes have
degree d. How many edges are there in a 3-regular
graph with 6 nodes?  
 

 A. Such a graph doesn’t exist  
 B. 18  
 C. 12 
 D. 9 
 E. It depends on the graph 
 

e.g., K3,3

n⋅d/2 (unless n & d odd)

1

ZBVY

A subgraph of G = (V,E) is a graph G’ = (V’,E’) such that
V’ ⊆ V and E’ ⊆ E 
 

 

 

 

 

To get a subgraph: Remove zero or more vertices, remove
all edges incident on them, and further remove zero or
more edges

Induced subgraph: omit the last step

Subgraphs

Walks, Paths & Cycles
A walk (of length k, k ≥ 0) from node a to node b is a
sequence of nodes (v0, v1, ... , vk) such that

v0 = a, vk = b

for all i ∈ {0,...,k-1}, the edge {vi,vi+1} ∈ E

Length is the number of edges in a walk. Could be 0.

If a walk has no node repeating, then it is called a path

If a walk of length k≥3 has v0=vk, but no other two
nodes are equal, then it is called a cycle

Note: we require a cycle to be of length at least 3

A graph is acyclic if it has no cycles (i.e., no Ck is a
subgraph of G)

Connectivity

Given a graph G, whether there is a path between two nodes
u and v is an important question regarding G

u is said to be connected to v if there is such a path

Prove: u connected to v iff there is a walk from u to v

Relation Connected(u,v) is an equivalence relation

Reflexive, Symmetric and Transitive

Equivalence classes of this relation are called the
connected components of G

Walks can be spliced
together to get walks

Distance
Shortest walk between nodes u and v is always a path

Shortest path is of great interest in many applications

e.g., nodes correspond to locations on a map and edges
are roads, optic fibers etc.

Also, graph can be used to model probabilistic processes,
with shortest path indicating the most likely outcome

Length of the shortest path between u and v is called the
distance between u and v (∞ if no path) 

Diameter is the largest distance in a graph (can be ∞)  

In many applications, the
edges on the graph will have
“lengths”. For us, typically all
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via
contradiction

Hence ∃ walk
→ ∃ path

