il

=

e .
B A —

p—
.-' s sl W YIS TY, v

Courtesy:gigaflop.demon.co.uk

Graphs

@ What is “connected” to what
@ Many things we deal with in computer science are graphs

@ Networks: humans, communication, computation,
transportation, knowledge

S
=
=
S
£
A
]
S
o
w
o
+
—
5
()
SE

Courtesy: Microsoft Academic Search

Courtesy: Digital Humanities Specialist @ Stanford

Courtesy: New Scientist

Simple Graphs

@ A simple graph G = (V,E), where
@EcC{{abtlabeV atb}

@ V is the set of nodes E the set of edges

@ V non-empty and finite (for us)

@ Note: the "drawing” is not part of the graph, only the
connectivity is

Simple Graphs

@ Recall graphs for relations: directed graphs with self-loops
@ Each element in the domain forms a node
® Each ordered pair (a,b) in the relation forms an edge
® Edges of the form (a,a) are “self-loops”

@ A simple graph is a symmetric, irreflexive relation

® Symmetric: An undirected edge {a,b} can be modelled as two
directed edges (a,b) and (b,a)

@ Irreflexive: No self-loops

@ In a "non-simple” graph, can allow more than one edge between
any pair (multigraphs), or more generally, allow weights on
edges (weighted graphs)

Examples

@ Complete graph K, : n nodes, with all possible edges between them
@ E={{ab}|abeV atb }
@ # edges, |[El = n(n-1)/2

@ Cycle Ch : V = {vi,...vn }, E = { {vi,vj} | j=i+l or (i=1 and j=n) }

@ Bipartite graph : V = V) u Vz, where V) n V2 = @ (i.e., a partition),
and no edge between two nodes in the same “part™:
E C {{a,b} | aeVy, beV,}

@ e.g., C, where n is even

® Complete bipartite graph Kninz : Bipartite graph, with |Vi|=n;, [V2|=n.
and E = { {a,b} | aeV;, beV; }
@ # edges, |El = ni-n>

@ Later: Hypercube, Trees

Graph Isomorphism

@ G, = (Vi,E1) and G2 = (V2,E2) are isomorphic if there is a bijection
f:V1 — V2 such that {u,v} € E; iff {f(u),f(v)} € E;
1
M b
O—

@ Computational problem: check if two graphs (given as adjacency
matrices) are isomorphic

QO o T o

@ Can rule out if certain “invariants” are not preserved (e.g. |V|,IEl)
@ In general, no “efficient” algorithm known, when graph is large

@ Some believe no efficient algorithm exists!

Degree of a node

@ Given a simple graph G = (V,E), for each node veV, the
degree of v is the number of edges incident on v

.

@ Formally, deg(v) = | { u: {uyvt € E } |

Note: Definition restricted
to simple graphs

@ Counting edges in two different ways: 2 - |E| = 3,cv deg(v)
@ Degree sequence: sorted list of degrees. (e.g.: 0,1,2,2,3)

@ Degree sequence invariant under isomorphism

Question

ZBVY

@ A graph is said to be d-regular if all nodes have
degree d. How many edges are there in a 3-regular
graph with 6 nodes?

A. Such a graph doesnt exist

B. 18) h
e.g., K33

- n-d/2 (unless n & d odd)

D. 9 ,

E. It depends on the graph

Subgraphs

@ A subgraph of G = (VE) is a graph G' = (V',E) such that
VicVandE CE

N

@ To get a subgraph: Remove zero or more vertices, remove
all edges incident on them, and further remove zero or
more edges

@ Induced subgraph: omit the last step

Walks, Paths & Cycles

@ A walk (of length k, k > 0) from node a to node b is a
sequence of nodes (vo, Vi, ..., Vk) such that

@Vo=a,Vk=Db
o for all i € {0,... k-1}, the edge {viviui} € E
@ Length is the number of edges in a walk. Could be 0.
@ If a walk has no node repeating, then it is called a path

@ If a walk of length k23 has vo=vk, but no other two
nodes are equal, then it is called a cycle

@ Note: we require a cycle to be of length at least 3

@ A graph is acyclic if it has no cycles (i.e., no Ck is a
subgraph of G)

Connectivity

@ Given a graph G, whether there is a path between two nodes

u and v is an important question regarding G

@ u is said fo be connected to v if there is such a path

@ Prove: u connected to v iff there is a walk from u to v

@ Relation Connected(u,v) is an equivalence relation

: : i, Walks can be spliced
@ Reflexive, Symmetric and Transitive ﬁ(fogemer o et vl

@ Equivalence classes of this relation are called the
connected components of G

[Prove via In many applications, the
contradiction edges on the graph will have
Hence 3 walk ‘D' -I- “lengths”. For us, typically all
[— 3 path ls ance ledges are of length 1.

@ Shortest walk between nodes u and v is always a path

@ Shortest path is of great interest in many applications

@ e.g., nodes correspond to locations on a map and edges
are roads, optic fibers etc.

@ Also, graph can be used to model probabilistic processes,
with shortest path indicating the most likely outcome

@ Length of the shortest path between u and v is called the
distance between u and v (e if no path)
m|n W: u-v walk Leng"‘h(W)

@ Diameter is the largest distance in a graph (can be o)

maxuy Distance(u,v) = maxuy Minw: u-v waik Length(W)

