
Graphs
Lecture 14

Distance
Shortest walk between nodes u and v is always a path

Shortest path is of great interest in many applications

e.g., nodes correspond to locations on a map and edges
are roads, optic fibers etc.

Also, graph can be used to model probabilistic processes,
with shortest path indicating the most likely outcome

Length of the shortest path between u and v is called the
distance between u and v (∞ if no path) 

Diameter is the largest distance in a graph (can be ∞)  

In many applications, the
edges on the graph will have
“lengths”. For us, typically all
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via
contradiction

Hence ∃ walk
→ ∃ path

Many Applications
Graphs used to design networks of processors in a super-computer

Used to keep data in an easy-to-search/manipulate fashion

Data structures: mainly, (balanced) trees of various kinds

Want low degree (hardware cost; look at a few (neighbouring)
pieces of data at a time), but good “connectivity” -- i.e., (possibly
many) short paths between any two nodes (to route data; to reach
the required piece of data quickly, by taking a path over the
graph)

Very efficient algorithms known for relevant graph problems

e.g., breadth/depth-first search, shortest path algorithm...

But many other graph problems are known to be “NP-hard”

e.g., Traveling Salesperson Problem (TSP): visit all cities, by
traveling the least distance

Grap
hs

 

in a
ctio

n

Shortest Paths in Action
Obvious example: nodes correspond to locations on a map and
edges are roads, optic fibers etc.

Weighted edges: each edge has its own “length” (instead of 1)

But also over more abstract graphs

e.g., Graph-based models in AI/machine-learning for modeling
probabilistic systems

e.g., a graph, modeling speech production: nodes correspond
to various “states” the vocal chords/lips etc. could be in
while producing a given a sound sequence. Edges show
transitions (next state) over time. Shortest path in this
graph gives the “most likely” word that was spoken.

Grap
hs

 

in a
ctio

n

Question

What is the diameter of Cn  

 A. n  
 B. ⌈n/2⌉  
 C. ⌊n/2⌋  
 D. n-1 
 E. 1  

e.g., C3 has diameter 1

1

Bridges of Königsberg

Cross each bridge exactly once  
 

 

 

 

 

 

 

Impossible! But how do we know for sure?

?!

Bridges of Königsberg

Cross each bridge exactly once  
 

 

 

 

 

 

 

Impossible! But how do we know for sure?
If there is a walk that takes each edge exactly once, then
only the end nodes of the walk can have odd degree (why?)  

Add a node for
each bridge too, if
we want it to be a

simple graph

Eulerian Trail & Circuit
Eulerian trail: a walk visiting every edge exactly once

Eulerian trail exists → at most 2 odd degree nodes

Eulerian circuit: a closed walk visiting every edge exactly once

Eulerian circuit exists → no odd degree nodes

If no odd degree nodes and all edges in one connected
component, then must have an Eulerian circuit!

Informal argument: find and remove one cycle at a time
(take a walk until repeated node), so that no odd degree
node ever. Finally stitch them all together into one
Eulerian circuit (possible since connected).

Question

Suppose G1, G2, G3 are simple graphs with the following
degree sequences: (2,2,2), (2,2,2,2,2,2), (0,0,2,2,2). Then

which ones must have Eulerian circuits? 
 

  
 A. G1 alone 

 B. G2 alone 

 C. G1 and G2  

 D. G1 and G3  

 E. G1, G2 and G3  

Only possibility is K3 Two possibilities: C6 or the
disjoint union of two K3’s.

2

All edges
within K3

Hamiltonian Cycle
Eulerian circuit: a closed walk visiting every edge exactly once

Eulerian circuit exists ⟷ all edges in the same connected
component and no odd degree nodes

Can efficiently find one if they exist

Hamiltonian Cycle: a cycle that contains all the nodes in the
graph

No efficient algorithm known to check if a graph has a
Hamiltonian cycle!

An “NP-hard” problem. Widely believed that no efficient
algorithm exists!

(cf. Graph Isomorphism: It is believed to be hard, but
also believed to be not NP-hard)

Graph Colouring
Recall bi-partite graphs

We can “colour” the nodes using 2 colours (which part they are
in) so that no edge between nodes of the same colour

More generally, a colouring (using k colours) is valid if there is no
edge between nodes of the same colour

k-colouring: a function c:V→{1,..,k} s.t. ∀x,y∈V {x,y}∈E →
c(x)≠c(y)

The least number of colours possible in a valid colouring of G is

called the Chromatic number of G, 𝜒(G)

G has a k-colouring ↔ 𝜒(G) ≤ k Upper-bounding 𝜒(G)

Graph Colouring
Suppose H is a subgraph of G. Then:

G has a k-colouring → H has a k-colouring

i.e., 𝜒(G) ≥ 𝜒(H)

e.g., G has Kn as a subgraph → 𝜒(G) > n-1 (i.e., 𝜒(G) ≥ n)

e.g., G has Cn for odd n as a subgraph → 𝜒(G) > 2

Summary: One way to show klower ≤ 𝜒(G) ≤ kupper 

 Show a colouring c:V→ {1,...,kupper}  
 And show a subgraph H with klower ≤ 𝜒(H)

Lower-bounding 𝜒(G)

Graph Colouring
The origins: map-making

“Graph”: one node for each country; an edge between
countries which share a border

Neighbouring countries shouldn’t have the same colour. Use as
few colours as possible.

Efficient algorithms known for colouring many special kinds of
graphs with as few colours as possible

But computing chromatic number in general is believed to be
“hard” (it is NP-hard)

Bi-partite Graph
Claim: for all integers n≥1, C2n+1 is not bi-partite

Base case: n=1. C3 has chromatic number 3. ✔

Induction step: For all integers k ≥ 2 :  
Induction hypothesis: C2k-1 is not bi-partite (corresponds to n=k-1)  
To prove: C2k+1 is not bi-partite (corresponds to n=k)

Will prove contrapositive: C2k+1 bi-partite → C2k-1 bi-partite

Suppose valid 2-colouring c:{0,..,2k} → {1,2} of C2k+1.

Then, c(0) ≠ c(2k) ≠ c(2k-1) ≠ c(2k-2). i.e., c(0)=c(2k-1)≠c(2k-2).

Only edge in C2k-1 not in C2k+1 is {0,2k-2}.

So c respects all edges of C2k-1.

So c’:{0,..,2k-2} → {1,2} with c’(u)=c(u) is a valid colouring of C2k-1.

0

2k

2k-1

2k-2
C2k+1

Complete Graph
𝜒(G)=|V| ↔ G is isomorphic to K|V|

←: 𝜒(Kn) = n (else, by pigeonhole principle, two nodes with

same colour!), and isomorphism preserves 𝜒 (exercise!)

→: We will prove the contrapositive: i.e., that if G not
isomorphic to K|V|, then 𝜒(G)≠|V|.

Suppose G not isomorphic to K|V|. So G should have at least
two distinct nodes u, v s.t. {u,v} ∉ E. Consider the colouring
which assigns colours {1,.., |V|-2} to the nodes in V-{u,v} and
the colour |V|-1 to both u and v. This is a valid colouring
(because f(x)=f(y) → {x,y}∉E). So 𝜒(G) ≤ |V|-1

Colouring and Degree

Base case: n=1. 
 There is only one graph with |V|=1, for which Δ(G)=0, 𝜒(G)=1

Induction step: For all integers k≥1:  
 Induction hypothesis: for all G=(V,E) with |V|=k, 𝜒(G) ≤ Δ(G)+1  
 To prove: for all graphs G=(V,E) with |V|=k+1, 𝜒(G) ≤ Δ(G)+1.

Let G=(V,E) be an arbitrary graph with |V|=k+1.

Let G’=(V’,E’) be obtained from G by removing some v∈V (i.e.,
V’=V-{v}) and all edges incident on it.

|V’|=k. So 𝜒(G’) ≤ Δ(G’)+1 ≤ Δ(G)+1. Colour G’ with Δ(G)+1
colours.

deg(v) ≤ Δ(G). So colour v with a colour in {1,..,Δ(G)+1} that
does not appear in its neighbourhood. Valid colouring.  
So 𝜒(G)≤Δ(G)+1.

Claim: ∀n∈Z+ for every graph G=(V,E) s.t. |V|=n, 𝜒(G) ≤ Δ(G)+1

Proof describes a
recursive algorithm
for colouring with
Δ(G)+1 colours

Important!

Graph Colouring in Action
Many problems can be modeled as a graph colouring problem

Resource scheduling: allocate “resources” (e.g. time slots, radio
frequencies) to “demands” (exams, radio stations) so that there are
no “conflicts.” Use as few resources as possible.

Create a “conflict graph”: Demands are the nodes; connect
them by an edge if they have a conflict (same student,
inhabited area with signal overlap)

Colour the graph with as few colours as possible

Allocate one resource per colour. Then, no two demands
satisfied by the same resource have a conflict

Grap
hs

 

in a
ctio

n

The hypercube graph Qn

Nodes: all n-bit strings. e.g., {000,001,010,011,100,101,110,111}

Edges: x and y connected iff they differ in exactly one position

i.e., x & y neighbours if toggling a single bit changes x to y

e.g. Q3 can be drawn like a “cube”

2n nodes, but “diameter” (longest shortest path) is only n

Qn is an n-regular bi-partite graph

The two parts: nodes labeled with strings which have even
parity (even# 1s) and those labeled with strings of odd parity
(odd# 1s)

Qn-1 is a subgraph of Qn

Another Example

“0Q3”

“1Q3”

Question

In Q5, what is the distance (length of a shortest
path) between the nodes labeled 00100 and 10001? 
 

 A. 6  
 B. 5  
 C. 4 
 D. 3 
 E. 2  

Many shortest paths (How many?)  
 

“weight of x⊕y”

3

