


[ Prove via In many applications, the
contradiction edges on the graph will have
Hence 3 walk ‘D' -I- “lengths”. For us, typically all
[ — 3 path ls ance ledges are of length 1.

@ Shortest walk between nodes u and v is always a path

@ Shortest path is of great interest in many applications

@ e.g., nodes correspond to locations on a map and edges
are roads, optic fibers etc.

@ Also, graph can be used to model probabilistic processes,
with shortest path indicating the most likely outcome

@ Length of the shortest path between u and v is called the
distance between u and v (e if no path)
m|n W: u-v walk Leng"‘h(W)

@ Diameter is the largest distance in a graph (can be o)

maxuy Distance(u,v) = maxuy Minw: u-v waik Length(W)



' Applications

@ Graphs used to design networks of processors in a super-computer

® Used to keep data in an easy-to-search/manipulate fashion
@ Data structures: mainly, (balanced) trees of various kinds

® Want low degree (hardware cost; look at a few (neighbouring)
pieces of data at a time), but good “connectivity” -- i.e., (possibly
many) short paths between any two nodes (to route data; to reach
the required piece of data quickly, by taking a path over the

graph)
@ Very efficient algorithms known for relevant graph problems
® e.g., breadth/depth-first search, shortest path algorithm...
@ But many other graph problems are known to be "NP-hard”

@ e.g., Traveling Salesperson Problem (TSP): visit all cities, by
traveling the least distance



@ Obvious example: nodes correspond to locations on a map and
edges are roads, optic fibers etc.

® Weighted edges: each edge has its own “length” (instead of 1)

@ But also over more abstract graphs

@ e.g., Graph-based models in AI/machine-learning for modeling
probabilistic systems

@ e.g., a graph, modeling speech production: nodes correspond
to various “states” the vocal chords/lips etc. could be in
while producing a given a sound sequence. Edges show
transitions (next state) over time. Shortest path in this
graph gives the "most likely” word that was spoken.



Question

® What is the diameter of C,

A. n

B. n/2T

C. |_n/2J { e.g., Cs has diameter 1 J
D. n-1

ET



Bridges of Konigsberg

@ Cross each bridge exactly once

@ Impossible! But how do we know for sure?



Bridges of Konigsberg

@ Cross each bridge exactly once

/

Add a node for

each bridge too, if
we want it to be a

L simple graph j \\ /

@ Impossible! But how do we know for sure?
@ If there is a walk that takes each edge exactly once, then

only the end nodes of the walk can have odd degree (why?)



Eulerian Trail & Circuit

@ Eulerian trail: a walk visiting every edge exactly once

@ Eulerian trail exists — at most 2 odd degree nodes

@ Eulerian circuit: a closed walk visiting every edge exactly once

@ Eulerian circuit exists — no odd degree nodes

@ If no odd degree nodes and all edges in one connected
component, then must have an Eulerian circuit!

@ Informal argument: find and remove one cycle at a time
(take a walk until repeated node), so that no odd degree
node ever. Finally stitch them all fogether into one
Eulerian circuit (possible since connected).



Question

@ Suppose G;, Gz, Gs are simple graphs with the following
degree sequences: (2,2,2), (2,2,2,2,2,2), (0,0,2,2,2). Then

which ones must Kave Eulerian|circuits?

(Only possibility is Ks [ Two possibilities: Ce or the ] All edges ]

disjoint union of two Kss5. within K3
A. G alone
B. G2 alone
C. Gy and G
D. Gi; and Gs3
| =

Gl, G2 and G3



Hamiltonian Cycle

@ Eulerian circuit: a closed walk visiting every edge exactly once

@ Eulerian circuit exists «— all edges in the same connected
component and no odd degree nodes

@ Can efficiently find one if they exist

@ Hamiltonian Cycle: a cycle that contains all the nodes in the
graph

@ No efficient algorithm known to check if a graph has a
Hamiltonian cycle!

@ An "NP-hard” problem. Widely believed that no efficient
algorithm exists!

@ (cf. Graph Isomorphism: It is believed to be hard, but
also believed to be not NP-hard)



Graph Colouring

@ Recall bi-partite graphs

@ We can “colour” the nodes using 2 colours (which part they are
in) so that no edge between nodes of the same colour

® More generally, a colouring (using k colours) is valid if there is no
edge between nodes of the same colour

@ k-colouring: a function c:V—{l,.. k} s.t. vx,yeV ix,y;cE —
c(x)£c(y)

® The least number of colours possible in a valid colouring of G is
called the Chromatic number of G, y(G)

® G has a k-colouring < x(G) < k <[ Upper-bounding x(G) J




Graph Colouring

@ Suppose H is a subgraph of G. Then:

@ G has a k-colouring — H has a k-colouring

oie. )((G) > )((H) <[ Lower-bounding x(G) J

@ e.g., G has K, as a subgraph — x(G) > n-1 (i.e., y(G) 2 n)

@ e.g., G has Cn for odd n as a subgraph — (G) > 2

@ Summary: One way to show Kiower ¢ ¥(G) < Kupper
Show a colouring c:V— {l,... Kupper}
And show a subgraph H with Kiower < y(H)



Graph Colouring

@ The origins: map-making

@ "Graph”: one node for each country; an edge between
countries which share a border

@ Neighbouring countries shouldnt have the same colour. Use as
few colours as possible.

@ Efficient algorithms known for colouring many special kinds of
graphs with as few colours as possible

@ But computing chromatic number in general is believed to be
“hard” (it is NP-hard)



Bi-partite Graph

@ Claim: for all integers n21, Cony is not bi-partite

® Base case: n=1. C3 has chromatic number 3. v/ S50

@ Induction step: For all integers k 2 2 :

Induction hypothesis: Cak.1 is not bi-partite (corresponds to n=k-1)
To prove: Cak.1 is not bi-partite (corresponds to n=k)

Will prove contrapositive: Cz41 bi-partite — Ca.1 bi-partite

Suppose valid 2-colouring c¢:{0,..,2k} — 11,2} of Caks1.

Then, c(0) # c(2k) # c(2k-1) # c(2k-2). i.e., c(0)=c(2k-1)#c(2k-2).
Only edge in Cak-1 not in Caks1 IS {0,2k-2}.

So ¢ respects all edges of Ca.i.

So ¢':10,..,2k-2} — 1,2} with c'(u)=c(u) is a valid colouring of Cak-1.

e 2 0 0 @ O



Complete Graph

8 y(G)=|V] — G is isomorphic to Ky

@ —: x(Kn) = n (else, by pigeonhole principle, two nodes with
same colour!), and isomorphism preserves y (exercise!)

@ —: We will prove the contrapositive: i.e., that if G not
isomorphic to Ky, then x(G)zIVI.

@ Suppose G not isomorphic to K. So G should have at least
two distinct nodes u, v s.t. {u,v} ¢ E. Consider the colouring
which assigns colours 11,.., [V|-2} to the nodes in V-{u,v} and
the colour |V|-1 to both u and v. This is a valid colouring
(because f(x)=f(y) — {x,y}2E). So x(G) < IV|-1



( \

Proof describes a
recursive algorithm

“aarerr blouring and Degree

a||Claim: vneZ+ for every graph G=(VE) s.t. [Vl=n, x(G) < 4(G)+1

@|[Base case: n=l.

There is only one graph with |[VI=1, for which 4(G)=0, x(G)=1

@|[Induction step: For all integers k21:
Induction hypothesis: for all G=(V,E) with [VI=k, x(G) < 4(G)+1
To prove: for all graphs G=(V,E) with |VI=k+1, x(G) < 4(G)+1.

o Let G=(V,E) be an arbitrary graph with [VI=k+l. = Important!

@ Let G'=(V',E’) be obtained from G by removing some veV (i.e.,
V'=V-1v}) and all edges incident on it.

a [V'|I=k. So AG') ¢ 4(G')+1 ¢ 4(G)+1. Colour G’ with 4(G)+1
colours.

@ deg(v) < 4(G). So colour v with a colour in {1,..,, 4(G)+1} that
does not appear in its neighbourhood. Valid colouring.
So y(G)< 4 (G)+1.




raph Colouring in Action

@ Many problems can be modeled as a graph colouring problem

® Resource scheduling: allocate “"resources” (e.g. time slots, radio
frequencies) to "demands” (exams, radio stations) so that there are
no “conflicts.” Use as few resources as possible.

® Create a “conflict graph”: Demands are the nodes; connect
them by an edge if they have a conflict (same student,
inhabited area with signal overlap)

@ Colour the graph with as few colours as possible

@ Allocate one resource per colour. Then, no two demands
satisfied by the same resource have a conflict



Another Example

@ The hypercube graph Qs
@ Nodes: all n-bit strings. e.g., {000,001,010,011,100,101,110,111}
@ Edges: x and y connected iff they differ in exactly one position
@ i.e.,, X & Yy neighbours if toggling a single bit changes x to vy
® e.g. Q3 can be drawn like a “cube”
@ 2" nodes, but "diameter” (longest shortest path) is only n
@ Qn is an n-regular bi-partite graph

@ The two parts: nodes labeled with strings which have even
parity (even# 1s) and those labeled with strings of odd parity
(odd# 1s) -4/'" 1 “1Qs"

® Qn-1 is a subgraph of Qn




Question

@ In Qs, what is the distance (length of a shortest
path) between the nodes labeled 00100 and 100017

( "weight of x@y” ]

@ Many shortest paths (How many?)

mo O wP
N w01 oo



