
Graphs
Lecture 14



Distance
Shortest walk between nodes u and v is always a path


Shortest path is of great interest in many applications


e.g., nodes correspond to locations on a map and edges 
are roads, optic fibers etc.


Also, graph can be used to model probabilistic processes, 
with shortest path indicating the most likely outcome


Length of the shortest path between u and v is called the 
distance between u and v (∞ if no path) 
                    


Diameter is the largest distance in a graph (can be ∞)  

In many applications, the 
edges on the graph will have 
“lengths”. For us, typically all 
edges are of length 1.

min W: u-v walk Length(W)

maxu,v Distance(u,v) = maxu,v minW: u-v walk Length(W)

Prove via 
contradiction

Hence ∃ walk 
→ ∃ path



Many Applications
Graphs used to design networks of processors in a super-computer


Used to keep data in an easy-to-search/manipulate fashion


Data structures: mainly, (balanced) trees of various kinds


Want low degree (hardware cost; look at a few (neighbouring) 
pieces of data at a time), but good “connectivity” -- i.e., (possibly 
many) short paths between any two nodes (to route data; to reach 
the required piece of data quickly, by taking a path over the 
graph)


Very efficient algorithms known for relevant graph problems


e.g., breadth/depth-first search, shortest path algorithm...


But many other graph problems are known to be “NP-hard”


e.g., Traveling Salesperson Problem (TSP): visit all cities, by 
traveling the least distance
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Shortest Paths in Action
Obvious example: nodes correspond to locations on a map and 
edges are roads, optic fibers etc.


Weighted edges: each edge has its own “length” (instead of 1)


But also over more abstract graphs


e.g., Graph-based models in AI/machine-learning for modeling 
probabilistic systems


e.g., a graph, modeling speech production: nodes correspond 
to various “states” the vocal chords/lips etc. could be in 
while producing a given a sound sequence. Edges show 
transitions (next state) over time. Shortest path in this 
graph gives the “most likely” word that was spoken.
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Question

What is the diameter of Cn  

     A.   n  
     B.   ⌈n/2⌉  
     C.   ⌊n/2⌋  
     D.   n-1 
     E.   1  

e.g., C3 has diameter 1
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Bridges of Königsberg

Cross each bridge exactly once  
 

 

 

 

 

 

 

Impossible! But how do we know for sure?

?!



Bridges of Königsberg

Cross each bridge exactly once  
 

 

 

 

 

 

 

Impossible! But how do we know for sure?
If there is a walk that takes each edge exactly once, then 
only the end nodes of the walk can have odd degree (why?)  

Add a node for 
each bridge too, if 
we want it to be a 

simple graph



Eulerian Trail & Circuit
Eulerian trail: a walk visiting every edge exactly once


Eulerian trail exists → at most 2 odd degree nodes


Eulerian circuit: a closed walk visiting every edge exactly once


Eulerian circuit exists → no odd degree nodes

If no odd degree nodes and all edges in one connected 
component, then must have an Eulerian circuit!


Informal argument: find and remove one cycle at a time 
(take a walk until repeated node), so that no odd degree 
node ever. Finally stitch them all together into one 
Eulerian circuit (possible since connected).



Question

Suppose G1, G2, G3 are simple graphs with the following 
degree sequences: (2,2,2), (2,2,2,2,2,2), (0,0,2,2,2). Then 

which ones must have Eulerian circuits? 
 

      
     A.   G1 alone 

     B.   G2 alone 

     C.   G1 and G2  

     D.   G1 and G3  

     E.   G1, G2 and G3  

Only possibility is K3 Two possibilities: C6 or the 
disjoint union of two K3’s.
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Hamiltonian Cycle
Eulerian circuit: a closed walk visiting every edge exactly once


Eulerian circuit exists ⟷ all edges in the same connected 
component and no odd degree nodes


Can efficiently find one if they exist


Hamiltonian Cycle: a cycle that contains all the nodes in the 
graph


No efficient algorithm known to check if a graph has a 
Hamiltonian cycle!


An “NP-hard” problem. Widely believed that no efficient 
algorithm exists!


(cf. Graph Isomorphism: It is believed to be hard, but 
also believed to be not NP-hard)



Graph Colouring
Recall bi-partite graphs


We can “colour” the nodes using 2 colours (which part they are 
in) so that no edge between nodes of the same colour


More generally, a colouring (using k colours) is valid if there is no 
edge between nodes of the same colour


k-colouring: a function c:V→{1,..,k} s.t. ∀x,y∈V {x,y}∈E → 
c(x)≠c(y)


The least number of colours possible in a valid colouring of G is 

called the Chromatic number of G, 𝜒(G)


G has a k-colouring ↔ 𝜒(G) ≤ k Upper-bounding 𝜒(G)



Graph Colouring
Suppose H is a subgraph of G. Then:


G has a k-colouring → H has a k-colouring 


i.e., 𝜒(G) ≥ 𝜒(H)


e.g., G has Kn as a subgraph → 𝜒(G) > n-1 (i.e., 𝜒(G) ≥ n )


e.g., G has Cn for odd n as a subgraph → 𝜒(G) > 2


Summary: One way to show klower ≤ 𝜒(G) ≤ kupper 

     Show a colouring c:V→ {1,...,kupper}  
     And show a subgraph H with klower ≤ 𝜒(H)

Lower-bounding 𝜒(G)



Graph Colouring
The origins: map-making


“Graph”: one node for each country; an edge between 
countries which share a border


Neighbouring countries shouldn’t have the same colour. Use as 
few colours as possible.


Efficient algorithms known for colouring many special kinds of 
graphs with as few colours as possible


But computing chromatic number in general is believed to be 
“hard” (it is NP-hard)



Bi-partite Graph
Claim: for all integers n≥1, C2n+1 is not bi-partite


Base case: n=1. C3 has chromatic number 3. ✔


Induction step: For all integers k ≥ 2 :  
Induction hypothesis:  C2k-1 is not bi-partite  (corresponds to n=k-1)  
To prove: C2k+1 is not bi-partite (corresponds to n=k)


Will prove contrapositive: C2k+1 bi-partite → C2k-1 bi-partite


Suppose valid 2-colouring c:{0,..,2k} → {1,2} of C2k+1. 

Then, c(0) ≠ c(2k) ≠ c(2k-1) ≠ c(2k-2). i.e., c(0)=c(2k-1)≠c(2k-2).

Only edge in C2k-1 not in C2k+1 is {0,2k-2}. 

So c respects all edges of C2k-1. 

So c’:{0,..,2k-2} → {1,2} with c’(u)=c(u) is a valid colouring of C2k-1.

0

2k

2k-1

2k-2
C2k+1



Complete Graph
𝜒(G)=|V| ↔ G is isomorphic to K|V|


←: 𝜒(Kn) = n (else, by pigeonhole principle, two nodes with 

same colour!), and isomorphism preserves 𝜒 (exercise!)


→: We will prove the contrapositive: i.e., that if G not 
isomorphic to K|V|, then 𝜒(G)≠|V|.


Suppose G not isomorphic to K|V|. So G should have at least 
two distinct nodes u, v s.t. {u,v} ∉ E. Consider the colouring 
which assigns colours {1,.., |V|-2} to the nodes in V-{u,v} and 
the colour |V|-1 to both u and v.  This is a valid colouring 
(because f(x)=f(y) → {x,y}∉E). So 𝜒(G) ≤ |V|-1



Colouring and Degree

Base case: n=1. 
   There is only one graph with |V|=1, for which Δ(G)=0, 𝜒(G)=1

Induction step: For all integers k≥1:  
   Induction hypothesis:  for all G=(V,E) with |V|=k, 𝜒(G) ≤ Δ(G)+1  
   To prove: for all graphs G=(V,E) with |V|=k+1, 𝜒(G) ≤ Δ(G)+1.


Let G=(V,E) be an arbitrary graph with |V|=k+1.

Let G’=(V’,E’) be obtained from G by removing some v∈V (i.e., 
V’=V-{v}) and all edges incident on it.

|V’|=k. So 𝜒(G’) ≤ Δ(G’)+1 ≤ Δ(G)+1. Colour G’ with Δ(G)+1 
colours.

deg(v) ≤ Δ(G). So colour v with a colour in {1,..,Δ(G)+1} that 
does not appear in its neighbourhood. Valid colouring.  
So 𝜒(G)≤Δ(G)+1.

Claim: ∀n∈Z+  for every graph G=(V,E) s.t. |V|=n, 𝜒(G) ≤ Δ(G)+1

Proof describes a 
recursive algorithm 
for colouring with 
Δ(G)+1 colours

Important!



Graph Colouring in Action
Many problems can be modeled as a graph colouring problem


Resource scheduling: allocate “resources” (e.g. time slots, radio 
frequencies) to “demands” (exams, radio stations) so that there are 
no “conflicts.” Use as few resources as possible.


Create a “conflict graph”: Demands are the nodes; connect 
them by an edge if they have a conflict (same student, 
inhabited area with signal overlap)


Colour the graph with as few colours as possible


Allocate one resource per colour. Then, no two demands 
satisfied by the same resource have a conflict
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The hypercube graph Qn


Nodes: all n-bit strings. e.g., {000,001,010,011,100,101,110,111}


Edges: x and y connected iff they differ in exactly one position


i.e., x & y neighbours if toggling a single bit changes x to y


e.g. Q3 can be drawn like a “cube”


2n nodes, but “diameter” (longest shortest path) is only n


Qn is an n-regular bi-partite graph


The two parts: nodes labeled with strings which have even 
parity (even# 1s) and those labeled with strings of odd parity 
(odd# 1s)


Qn-1 is a subgraph of Qn

Another Example

“0Q3”

“1Q3”



Question

In Q5, what is the distance (length of a shortest 
path) between the nodes labeled 00100 and 10001? 
 

       A.  6  
       B.  5  
       C.  4 
       D.  3 
       E.  2  

Many shortest paths  (How many?)  
 

“weight of x⊕y”
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