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Matchings and Vertex Cover

@ A matching in a graph G=(V,E) is a set of edges which do not
share any vertex

®i.e.,aset M CEs.t vVe,ese M, eies 2 ejnex=0Q

@ Hall's Theorem: Bipartite graph G=(X,Y,E) has a complete
matching from X to Y iff no subset of X is shrinking

@ A vertex cover of a graph G=(V,E) is a set C of vertices such that
every edge is covered by (incident on) at least one vertex in C

® i.e., C CV is a vertex cover if V ecE, enC # @

@ In any graph, Vv vertex cover C, v matching M, [C| 2 |MI.
[ any vertex can cover at most one edge in M.]

® Kénig-Egervary Theorem: In a bipartite graph, the size of the
smallest vertex cover equals the size of the largest matching




Vertex Cover In Bipartite Graphs

® Kénig-Egervary theorem: In a bipartite graph, the size of the
smallest vertex cover equals the size of the largest matching

@ To prove that in a bipartite graph G=(X,Y,E), given a smallest
vertex cover C, there is a matching M with M| > [C|

@ Let A=CnX and B=CnY. Enough to show 3 a complete matching
from A to Y-B and 3 a complete matching from B to X-A

@ By Halls theorem, enough to show that no SCA is shrinking in
Y-B (and similarly that no SCB is shrinking in X-A)

@ Suppose SCA shrinking in Y-B. Cul'(S)-S is a vertex cover

[edges covered by S are covered by I'(S)] and strictly smaller
than C!' [ Icul’(s)-sl = Icl + | I°(S)-B| - |S| < Icl.]



Vertex Cover in General Graphs

@ Recall that finding (the size of) a smallest Vertex Cover is hard,
but finding a maximum matching isnt

@ Even easier to find a maximal matching: M is a maximal
matching if no edge e € E-M such that Muie;} is also a

matching

@ Repeat until no more edges: pick an arbitrary edge, and
delete all edges touching it

@ If M is a maximal matching, there is a vertex cover of size 2|M|

@ Include both end points of each edge in M (i.e., C = Ueem ©)

@ M is maximal = no edge e with both its nodes not in C
— C Is a vertex cover

@ If C is a smallest vertex cover and M a maximal matching,
IM| < IC| < 2|MI. Hence, can efficiently approximate the size of the
smallest vertex cover within a factor of 2.



Question

AQQY

@ Let M(G) denote the size of the largest matching and
C(G) the size of the smallest vertex cover of G. Then

A. M(Kn) = C(Kn) = Ln/2] <
B. M(Kn) + C(Kn) =N M(Kn) - ln/zj

C. M(K,) = C(K,) iff nc2 < C(K,) = n-1

D. M(K,) < C(Kn) y \ / -y
E. M(Kn) > C(Kn) M(G) = C(G) for

bipartite G, but K, for
n>2 is not bipartite
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Vertex Cover and
Independent Set

® In a graph G=(V,E), I C V is said to be an independent set if there
are no edges in the subgraph induced by I

@le,VeecE e¢l
@ I is an independent set iff V-1 is a vertex cover
el l«sen(V-I)20Q
@1is. < veecE, e ¢ I & veeE, en(V-I) + @ & V-I v.c.

@ Hence size of smallest i.s. = n - size of largest v.c.



Trees and Forests

@ Tree: a connected acyclic graph
@ Forest: an acyclic graph

@ Each connected component
in a forest is a tree

@ Any subgraph of a tree is a
forest (possibly a tree)

@ A single tree is a forest too




Leafs

@ A leaf is a node which has degree 1
® Every tree with at least 2 nodes has at least 2 leaves

@ Consider a maximal path P = vo,...,vk [exists in any finite graph]

@ k>0 [else vo is an isolated vertex, and the graph is not connected]

@ If vo is not a leaf, it has a neighbour v; for i>1. But then vy,...,vi
form a cycle! So vo is a leaf. Similarly, vk is a leaf.

@ If G is a tree with at least 2 nodes, deleting a leaf w (and the
one edge incident on it) results in a tree G

® G’ is connected, because all u-v paths in G are retained in G’
for u,v#w



Induction on Trees
(By Deleting Leafs)

@ Claim: In a tree, for any two nodes u,v, there is exactly one u-v
path (i.e., path from u to v)

® Proof by induction on the number of nodes

® Base case: 1 node. Only one path from v to itself (of length 0) v

@ Suppose the claim holds for trees with k nodes, for some k>1.

@ Given a tree G with k+l nodes, delete a leaf w to get a tree G’
@ (Recall: There is a leaf, and deleting it gives a tree)

@ For u,v#w: any u-v path in G is present in G" (w cannot occur in
the middle of a path). So, by ind. hyp. exactly one u-v path.

@ For u#w, v=w: Any u-w path in G is of the form u-x path
followed by w, where x is ws only neighbour. But exactly one
u-x path. So exactly one u-w path.

@ Also, only one w-w path.
@ So for all u,v, exactly one u-v path in G v/
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Number of Edges

In a tree (VE), IEl = |V]-1
Proof by induction on |V|
Base case: |V| = 1. Only one such tree, and it has |E|=0.

Induction step: for all k > 1
Hypothesis: for every tree (V,E) with |[V|=k-1, |[E|=|V]-1
To prove: for every tree (V,E) with |VI|=k, [El=|V|-1
® Suppose G=(V,E) is a tree with |[V| = k > 1. Consider G'=(V',E’)
be the tree obtained by deleting a leaf.
® By induction hypothesis, |[E'|=|V’|-1=k-2. But |[E|=|E’|+1 (because
exactly one edge was deleted). So |E|=k-1.

In a forest (V,E), the number of connected components, c=|V|-|E|

® Components be (V,Ej). Note that |V| = 5 [Vil and [E] = % |E|l
|El = Zici to ¢ |Eil = =izt to ¢ (IVil-1) = Szt 1o ¢ IVil) - ¢ = [VI-c
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Question

@ Suppose |V|=4. How many different trees are there

over V?
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A tree on V has 3 out of 6 possible
edges. C(6,3)=20 such choices.
But 4 of them are not trees
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Dilworths Theorem

® An application of Konig-Egervary theorem to posets

@ Dilworth's Theorem: In a poset, the size of a largest anti-chain
(called the width of the poset) equals the size of a smallest

chain decomposition (i.e., a partition of the poset into chains)

@ cf. Mirsky's Theorem: Size of a largest chain (height of the poset)
equals the size of a smallest anti-chain decomposition

@ Easy part: Any chain decomposition is larger than any anti-chain
(as no two elements in the anti-chain can be in the same chain)

@ Non-trivial part: There is a chain decomposition and an anti-chain
of the same size



Dilworths Theorem

@ To show that there is an anti-chain at least as large as a chain
decomposition (then, must be of the same size)

@ Consider a poset (S,<), with [S|=n
@ Construct a bipartite graph G s.*.
® a vertex cover of size < t in G = antichain of size > n-t

@ a matching of size > t in G = partition S into < n-t chains

® Konig-Egervary theorem: there is a vertex cover and matching
of the same size, say 1, in G

@ Hence an antichain at least as large as a chain decomposition



° /
Dilworths Theorem
@ Let G=(Sx{0},5x{1},E), where E = §{ {(u,0),(v,1)} | usv, uzv }

C={(d,0).(a,1)}
B = {a,d}
A = {b,c}

@ Given vertex cover C, let B ={u |3be{0,1}, (u,b) € C }. Let A=S-B.
a |Bl < [C| = |Al > |s|-Ic]

@ Also, A is an anti-chain
[ If u,veA, and uxy, then (u,0) and (v,1) ¢ C, and edge {(u,0),(v1)} € E ! ]



Dilworths Theorem

@ Let G=(Sx{0},5x{1},E), where E = §{ {(u,0),(v,1)} | usv, uzv }
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® Given a matching M, define a graph F=(S,E*), where
E*={ {uv} | {(u0).(v1)} € M }.

@ F is a forest, with each connected component being a path

@ In F, u can have degree at most 2 (one from (u,0) and one
from (u,1)). F has no cycles [Cycle vo,vi,....vk = Vo < Vi < .. < Vo ! ]

® Each such path in F forms a chain in the poset

@ Number of chains = number of connected components
= ISl - |E*] = |S]-IM|



Dilworths Theorem

@ To show that there is an anti-chain at least as large as a chain
decomposition (then, must be of the same size)

@ Consider a poset (S,<), with [S|=n
@ Construct a bipartite graph G s.*. v
® a vertex cover of size < t in G = antichain of size > n-t

@ a matching of size > t in G = partition S into < n-t chains

® Konig-Egervary theorem: there is a vertex cover and matching
of the same size, say 1, in G

@ Hence an antichain at least as large as a chain decomposition



Min-Max Results

@ We saw (easy relations)
@ In a poset, size of any chain < size of any anti-chain decomp.
@ In a poset, size of any anti-chain < size of any chain decomp.

@ In a graph, size of any matching < size of any vertex cover

® Sometimes these turn out to be “tight”: Equality can be achieved
® Mirskys theorem

® Dilworths theorem

® Konig-Egervary theorem (for bipartite graphs only)



