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A matching in a graph G=(V,E) is a set of edges which do not 
share any vertex


i.e., a set M ⊆ E s.t. ∀e1,e2 ∈ M, e1≠e2 → e1 ∩ e2 = Ø  


Hall’s Theorem: Bipartite graph G=(X,Y,E) has a complete 

matching from X to Y iff no subset of X is shrinking


A vertex cover of a graph G=(V,E) is a set C of vertices such that 
every edge is covered by (incident on) at least one vertex in C


i.e., C ⊆ V is a vertex cover if ∀ e∈E, e∩C ≠ Ø


In any graph, ∀ vertex cover C, ∀ matching M, |C| ≥ |M|.               
[ any vertex can cover at most one edge in M.]


Kőnig-Egerváry Theorem:  In a bipartite graph, the size of the 

smallest vertex cover equals the size of the largest matching

Matchings and Vertex Cover



Kőnig-Egerváry theorem:  In a bipartite graph, the size of the 

smallest vertex cover equals the size of the largest matching


To prove that in a bipartite graph G=(X,Y,E), given a smallest 
vertex cover C, there is a matching M with |M| ≥ |C|


Let A=C∩X and B=C∩Y. Enough to show ∃ a complete matching 
from A to Y-B and ∃ a complete matching from B to X-A


By Hall’s theorem, enough to show that no S⊆A is shrinking in 
Y-B (and similarly that no S⊆B is shrinking in X-A)


Suppose S⊆A shrinking in Y-B.  C∪Γ(S)-S is a vertex cover 
[edges covered by S are covered by Γ(S)] and strictly smaller 
than C!   [  |C∪Γ(S)-S| = |C| + |Γ(S)-B| - |S| < |C|.]

Vertex Cover in Bipartite Graphs



Recall that finding (the size of) a smallest Vertex Cover is hard, 
but finding a maximum matching isn’t


Even easier to find a maximal matching: M is a maximal 
matching if no edge e ∈ E-M such that M∪{e} is also a 
matching


Repeat until no more edges: pick an arbitrary edge, and 
delete all edges touching it


If M is a maximal matching, there is a vertex cover of size 2|M|


Include both end points of each edge in M  (i.e., C = ∪e∈M e)


M is maximal ⇒ no edge e with both its nodes not in C 
                 ⇒ C is a vertex cover


If C is a smallest vertex cover and M a maximal matching, 
|M| ≤ |C| ≤ 2|M|. Hence, can efficiently approximate the size of the 
smallest vertex cover within a factor of 2.

Vertex Cover in General Graphs



Question

Let M(G) denote the size of the largest matching and 
C(G) the size of the smallest vertex cover of G. Then  
 
       A.  M(Kn) = C(Kn) = ⌊n/2⌋ 
       B.  M(Kn) + C(Kn) = n 
       C.  M(Kn) = C(Kn) iff n≤2 
       D.  M(Kn) < C(Kn) 
       E.  M(Kn) > C(Kn) 

1

M(Kn) = ⌊n/2⌋ 
C(Kn) = n-1

AQQY

M(G) = C(G) for 
bipartite G, but Kn for 
n>2 is not bipartite



In a graph G=(V,E), I ⊆ V is said to be an independent set if there 
are no edges in the subgraph induced by I


i.e., ∀e ∈ E,   e ⊈ I


I is an independent set iff V-I is a vertex cover


e ⊈ I ⟷ e ∩ (V-I) ≠ Ø


I i.s. ⇔ ∀e∈E, e ⊈ I ⇔ ∀e∈E,  e∩(V-I) ≠ Ø ⇔ V-I v.c.


Hence size of smallest i.s. = n - size of largest v.c.

Vertex Cover and 
Independent Set



Trees and Forests
Tree: a connected acyclic graph


Forest: an acyclic graph


Each connected component 
in a forest is a tree


Any subgraph of a tree is a 
forest (possibly a tree)


A single tree is a forest too



A leaf is a node which has degree 1


Every tree with at least 2 nodes has at least 2 leaves


Consider a maximal path P = v0,…,vk   [exists in any finite graph]


k>0     [else v0 is an isolated vertex, and the graph is not connected] 


If v0 is not a leaf, it has a neighbour vi for i>1. But then v0,…,vi 
form a cycle! So v0 is a leaf. Similarly, vk is a leaf.


If G is a tree with at least 2 nodes, deleting a leaf w (and the 
one edge incident on it) results in a tree G’


G’ is connected, because all u-v paths in G are retained in G’ 
for u,v≠w

Leafs



Claim: In a tree, for any two nodes u,v, there is exactly one u-v 
path (i.e., path from u to v)

Proof by induction on the number of nodes

Base case: 1 node. Only one path from v to itself (of length 0) ✓

Suppose the claim holds for trees with k nodes, for some k≥1.

Given a tree G with k+1 nodes, delete a leaf w to get a tree G’


(Recall: There is a leaf, and deleting it gives a tree)

For u,v≠w: any u-v path in G is present in G’ (w cannot occur in 
the middle of a path). So, by ind. hyp. exactly one u-v path.

For u≠w, v=w: Any u-w path in G is of the form u-x path 
followed by w, where x is w’s only neighbour. But exactly one 
u-x path. So exactly one u-w path. 

Also, only one w-w path.

So for all u,v, exactly one u-v path in G ✓ 

Induction on Trees  
(By Deleting Leafs)



Number of Edges
In a tree (V,E), |E| = |V|-1


Proof by induction on |V|


Base case: |V| = 1. Only one such tree, and it has |E|=0.


Induction step: for all k > 1 
   Hypothesis:  for every tree (V,E) with |V|=k-1, |E|=|V|-1 
   To prove: for every tree (V,E) with |V|=k, |E|=|V|-1


Suppose G=(V,E) is a tree with |V| = k > 1.  Consider G’=(V’,E’) 
be the tree obtained by deleting a leaf.  


By induction hypothesis, |E’|=|V’|-1=k-2. But |E|=|E’|+1 (because 
exactly one edge was deleted). So |E|=k-1.


In a forest (V,E), the number of connected components, c=|V|-|E|


Components be (Vi,Ei). Note that |V| = Σi |Vi| and |E| = Σi |Ei| 
|E| = Σi=1 to c |Ei| = Σi=1 to c (|Vi|-1) = (Σi=1 to c |Vi|) - c = |V|-c



Question

Suppose |V|=4. How many different trees are there 
over V?  
 
       A.  4  
       B.  8 
       C.  12 
       D.  16 
       E.  20 

2

A tree on V has 3 out of 6 possible 
edges. C(6,3)=20 such choices.  
But 4 of them are not trees

ZLGF



An application of Kőnig-Egerváry theorem to posets


Dilworth’s Theorem: In a poset, the size of a largest anti-chain 

(called the width of the poset) equals the size of a smallest 

chain decomposition (i.e., a partition of the poset into chains)


cf. Mirsky’s Theorem: Size of a largest chain (height of the poset) 
equals the size of a smallest anti-chain decomposition


Easy part: Any chain decomposition is larger than any anti-chain 
(as no two elements in the anti-chain can be in the same chain)


Non-trivial part: There is a chain decomposition and an anti-chain 
of the same size

Dilworth’s Theorem



To show that there is an anti-chain at least as large as a chain 
decomposition (then, must be of the same size)


Consider a poset (S,≼), with |S|=n


Construct a bipartite graph G s.t. 


a vertex cover of size ≤ t in G ⇒ antichain of size ≥ n-t


a matching of size ≥ t in G ⇒ partition S into ≤ n-t chains


Kőnig-Egerváry theorem: there is a vertex cover and matching 
of the same size, say t, in G


Hence an antichain at least as large as a chain decomposition

Dilworth’s Theorem



Given vertex cover C, let B = { u |∃b∈{0,1}, (u,b) ∈ C }. Let A=S-B.


|B| ≤ |C| ⇒ |A| ≥ |S|-|C|


Also, A is an anti-chain 
[ If u,v∈A, and u≼v, then (u,0) and (v,1) ∉ C, and edge {(u,0),(v,1)} ∈ E ! ]

Dilworth’s Theorem
Let G=(S×{0},S×{1},E), where E = { {(u,0),(v,1)} | u≼v, u≠v }
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C={(d,0),(a,1)} 
B = {a,d} 
A = {b,c}



Given a matching M, define a graph F=(S,E*), where  
E*={ {u,v} | {(u,0),(v,1)} ∈ M }. 


F is a forest, with each connected component being a path


In F, u can have degree at most 2 (one from (u,0) and one 
from (u,1)). F has no cycles [Cycle v0,v1,…,vk ⇒ v0 ≼ v1 ≼ .. ≼ v0 ! ]


Each such path in F forms a chain in the poset


Number of chains = number of connected components  
                      = |S| - |E*| = |S|-|M|

Dilworth’s Theorem
Let G=(S×{0},S×{1},E), where E = { {(u,0),(v,1)} | u≼v, u≠v }
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To show that there is an anti-chain at least as large as a chain 
decomposition (then, must be of the same size)


Consider a poset (S,≼), with |S|=n


Construct a bipartite graph G s.t. 


a vertex cover of size ≤ t in G ⇒ antichain of size ≥ n-t


a matching of size ≥ t in G ⇒ partition S into ≤ n-t chains


Kőnig-Egerváry theorem: there is a vertex cover and matching 
of the same size, say t, in G


Hence an antichain at least as large as a chain decomposition

Dilworth’s Theorem

✓



We saw (easy relations)


In a poset,  size of any chain ≤ size of any anti-chain decomp.


In a poset,  size of any anti-chain ≤ size of any chain decomp.


In a graph, size of any matching ≤ size of any vertex cover 

Sometimes these turn out to be “tight”: Equality can be achieved


Mirsky’s theorem


Dilworth’s theorem


Kőnig-Egerváry theorem (for bipartite graphs only)

Min-Max Results


