Recursive Definitions
And Applications to Counting

Lecture 17

To

£

wer of Hanoi

i
-

') ey

.....

http://en.wikipedia.org/wiki/Tower_of_Hanoi

® Move entire stack of disks to another peg
® Move one from the top of one stack to the fop of another
@ A disk cannot be placed on top of a smaller disk

® How many moves needed?

@ Optimal number not known when 4 pegs and over =30 disks!

@ Optimal solution known for 3 pegs (and any number of disks)

S p— -,

http://en.wikipedia.org/wiki/Tower_of_Hanoi

@ Recursive algorithm (optimal for 3 pegs)

® Transfer(n,A,C):
If n=1, move the single disk from peg A to peg C
Else
Transfer(n-1,A,B) (leaving the largest disk out of play)
Move largest disk to peg C
Transfer(n-1,B,C) (leaving the largest disk out of play)

Tower of Hanoi

@ Recursive algorithm (optimal for 3 pegs)

® Transfer(n,A,C):
If n=1, move the single disk from peg A to peg C
Else
Transfer(n-1,A,B) (leaving the largest disk out of play)
Move largest disk to peg C
Transfer(n-1,B,C) (leaving the largest disk out of play)

@ How many moves are made by this algorithm?

@ M(n) be the number of moves made by the above algorithm
@ M(n) = 2M(n-1) + 1 with M(1) =1

@ So, M(n) = ?

Catalan Numbers

@ How many paths are there in the grid from (0,0) to (n,n) without ever

crossing over to the y>x region?
@ Any path can be constructed as follows
@ Pick minimum k>0 s.t. (k,k) reached

2 (0,0) — (1,0) = (kKk-1) — (k,K) = (n,n)
where = denotes a Catalan path

@ Cat(n) = k-1 to n Cat(k-1)-Cat(n-k)

@ Cat(0) =1

@ So, Cat(n) = ?

Recursive Definitions

{ Initial Condition W
@ E.g, f(0)=1 J
{:(n) = n-F(n-l) vneZ s.t. n>0 { Recurrence relation J

@flnNN=n-(n-1)-..-1-1=n!
@ This is the formal definition of n! (without using “...%)

@ A recursive program to compute factorial:

factorial (n€EN) {

if (n==0) return 1;
else return n*factorial(n-1);

Question

a f(0) =5; f(n) = 3-f(n-1) for neZ+. Then for neN
A. f(n) = 5+l
B. f(n) = 3-5n
C. f(n) =5-3n
D. f(n) = 15-3n
E. None of the above

YSQR

Fibonacci Sequence

@ F(0) =0
F(1) =1

F(n) = F(n-1) + F(n-2) vn > 2 .

@ F(n) called the nth Fibonacci number (starting
with Oth)

..
nn

Counting Strings

@ How many ternary strings of length n which dont have "00”
as a substring?

@ Set up a recurrence
@ A(n) = # such strings starting with O
@ B(n) = # such strings not starting with O
a A(n) = B(n-1) . B(n) = 2(A(n-1) + B(n-1)). [Why?]
a Initial condition: A(0) = 0; B(0) = 1 (empty string)
@ Required count: A(n) + B(n)
@ Can rewrite in terms of just B
» B(0O) =1.B(1) = 2. B(n) = 2B(n-1) + 2B(n-2) vn > 2
@ Required count: B(n-1) + B(n).

Question

JAWS
@ Consider bit strings of length n which have "01” as a

substring. Let A(n) = # such strings starting with O and

B(n) = # such strings starting with 1. Then:
a)
A(n) = A(n-1) + 2n-2,

A. A(n) = A(n-1) + B(n-1) B(n) = A(n-1) + B(n-1)
B. A(n) = A(n-1) + 2n-2)
C. A(n) = 21 + B(n-1) Exercise: Count directly,
D. A(n) =1 + B(n-1) by counting “"bad” strings
E. None of the above

Closed Form

@ Sometimes possible to get a "closed form” expression for a
quantity defined recursively (in terms of simpler operations)

@ e.g., f(0)=0 & f(n) = f(n-1) + n, ¥vn>0
@ f(n) = n(n+1)/2
@ Sometimes, we just give it a name

@ e.g., n!, Fibonacci(n), Cat(n)

@ In fact, formal definitions of integers, addition,
multiplication etc. are recursive

@eg.,0a=0 & n-a=(n-1)a+a vnO
@eg,20=1 & 2n=2-2n!
@ Sometimes both

@ e.g., Fibonacci(n), Cat(n) have closed forms (later)

Understanding a Recursive
Definition

@ Suppose g(1) =1 & g(n) =2g(n-1) + n vn>l.

@ g(n) is growing “exponentially” by (more than) doubling for
each increment in n

@ g(n) =7
® Make a “guess”. Then prove by induction
® How do we guess? (More ideas later.)

@ g(n) =n + 2-g(n-1)
=n+ 2-((n-1) + 2-g(n-2))
=n+ 2-((n-1) + 2-((n-2) + 2-g(n-3))
=n + 2.(n-1) + 22.(n-2) + 23.g(n-3)

@ g(n) = 2k=0 ton-1 2k-(n-k) (make sure the base case matches)

Recursion & Induction

® Claim: F(3n) is even, where F(n) is the nth Fibonacci number, vn20

0112 35 813 21 34..

Stronger claim (but easier to prove by induction):
F(n) is even iff n is a multiple of 3

@ Proof by induction:

® Base case:
n=0: F(3n) =F(0)=0¢v n=1:F(3n)=F(3) =2 v

@ Induction step: for all k22
Induction hypothesis: suppose for 0<nzk-1, F(3n) is even
To prove: F(3K) is even

@ F(3k) = F(3k-1) + F(3k-2) = ?

® Unroll further: F(3k-1) = F(3k-2) + F(3k-3)
F(3k) = 2-F(3k-2) + F(3(k-1)) = even, by induction hypothesis

Recursion & Induction

Example:
@ f(0)=c. f(1) =d. f(n) =a-f(n-1) + b-f(n-2) wvn22. Flleriee

numbers

@ Suppose X2 - aX - b = 0 has two distinct (possibly complex)

solutions, x and Yy Characteristic equation:
replace f(n) by Xnin the recurrence

@ Claim: f(n) = p-x" + q-y» for some p,q
@ Base cases satisfied by p=(d-cy)/(x-y), q=(d-cx)/(y-x)

@ Inductive step: for all k22
Induction hypothesis: vns.t. 1 < n < k-1, f(n) = px" + qyn
To prove: f(k) = pxk - qyk

@ f(k) = a-f(k-1) + b-f(k-2)

= a.(ka—l.l_qyk—l) + b.(ka—Z_l.qyk-Z) e ka 1 qyk + ka + qyk
= - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk v/

Recursion & Induction
@ f(0) =c. f(1) =d. f(n) = a-f(n-1) + b-f(n-2) wvn22.

@ Suppose X2 - aX - b = O has only one solution, x+O0.
i.e., a=2X, b=-x2, so that X2 - aX - b = (X-x)2.

@ Claim: f(n) = (p + q-'n)x" for some p,q
® Base cases satisfied by p = ¢, q = d/x-c

@ Inductive step: for all k22
Induction hypothesis: vns.t. 1 < n < k-1, f(n) =(p + gn)y"
To prove: f(k) = (p+qk)xk

@ f(k) = a-f(k-1) + b-f(k-2)
= a (p+qk-q)xk-! + b-(p+gk-2q)xk-2 - (p+qk)xk + (p+gk)xk
= -(p+qk)xk-2(x2-ax-b) - qxk-2(ax-2b) + (p+qk)xk = (p+qk)xk v

Solving a Recurrence

@ Often, once a correct guess is made, easy to prove by induction
@ How does one guess?
® Will see a couple of approaches

@ By unrolling the recursion into a chain or a “rooted tree”

@ Using the “method of generating functions” (next time)

Unrolling a recursion

@ Often helpful to try “unrolling” the recursion to see
what is happening

@ e.g., expand intfo a chain:
@ T(0) =0 & T(n) =T(n-1) + n2 vn2l
@ T(n-1) = T(n-2) + (n-1)2, T(n-2) = T(n-3) + (n-2)?, ...
@ T(n) = n2 + (n-1)2 + (n-2)2 + T(n-3) Vvn23
@ T(n) = 2ka1t0n k2 + T(0) vn20

Another example

@T(1)=0
TIN) =T(IN/2])+1 WN22

@ Let us consider N of the form 2n (so we can forget the floor)

@ T(N) =1 + T(N/2) How many l'sj
A slowly
growing function

=1+1+T(N/A) are there?

=1+14+..+T(1)
@ T(27) = n
@ T(N) =logz N (or simply log N) for N a power of 2

@ General N? T monotonically increasing (by strong induction). So,
T(2LlogNJ) < T(N) ¢ T(2TlegNT) : i.e., [logN| < T(N) < [log N|

® In fact, T(N) = T(2LlegNJ) = | log N| (Exercise)

Tower of Hanoi

@ Recursive algorithm (optimal for 3 pegs)

® Transfer(n,A,C):
If n=1, move the single disk from peg A to peg C
Else
Transfer(n-1,A,B) (leaving the largest disk out of play)
Move largest disk to peg C
Transfer(n-1,B,C) (leaving the largest disk out of play)

® M(n) be the number of moves made by the above algorithm
@ M(n) = 2M(n-1) + 1 with M(1) =1

® Unroll the recursion into a “rooted tree”

| root |

Rooted Tree

@ A tree, with a special node, designated as the rooft .
: &) Pr parent

@ Typically drawn “upside down / \ of v
@ Parent and child relation: u is vs parent if the a
unique path from v to root contains edge {v,u} ~ it
(0} V)

(parent unique; root has no parent)

@ If uis vs parent v, then v is a child of u W .

@ u is an ancestor of v, and v a descendent 07 \
u if the v-root path passes through u ®

@ Leaf is redefined for a rooted tree, as a / \
node with no child

|
O
@ Root is a leaf iff it has degree O ‘ ‘ & ‘

(if deg(root)=1, not called a leaf)

Q 0 O 9

Q 0O

Rooted Tree

Leaf: no children. Internal node: has a child the

Ancestor, descendant: partial orders
Subtree rooted at u: with all descendants of u

Depth of a node: distance from root.
Height of a tree: maximum depth / \

Level i: Set of nodes at depth i.

Note: tree edges are between adjacent lev?ds

‘/

Arity of a tree: Max (over all nodes)
number of children. m-ary if arity < m. /

|
Full m-ary tree: Every internal node \
has exactly m children. ‘ ‘ & ‘

Complete & Full: All leaves at same level

Rooted Tree

@ Number of nodes in Complete & Full m-ary tree

@ One root node with m children at level 1

@ Each level 1 node has m children at level 2 / \ W

@ m? nodes at level 2
@ At level i, mi nodes
@ mh leaves, where h is the height
@ Total number of nodes:

@ MmO+ ml+m2+ ..+ mh=(mbt-1)/(m-1) /

@ Prove by induction:
(mh-1)/(m-1) + mh = (mh+1-1)/(m-1) /
@ Binary tree (m=2) ‘
@ 2h leaves, 2"-1 internal nodes

@ M(1) =1

M(n) = 2M(n-1) + 1

I

Doing it bottom-u
Could also think
top-down

.

Y

_

Tower of Hanoi

@ M(1) =1
M(n) = 2M(n-1) + 1

@ Exponential growth du

o M(2) = 3, M(3) = 7, .. b b

@ M(n) = #nodes in a complete and full binary tree of
height n-1

@ M(n) = 2n -1

