
Recursive Definitions 
And Applications to Counting

Lecture 17



Tower of Hanoi

Move entire stack of disks to another peg


Move one from the top of one stack to the top of another


A disk cannot be placed on top of a smaller disk


How many moves needed?


Optimal number not known when 4 pegs and over ≈30 disks!


Optimal solution known for 3 pegs (and any number of disks)

http://en.wikipedia.org/wiki/Tower_of_Hanoi



Tower of Hanoi

Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

http://en.wikipedia.org/wiki/Tower_of_Hanoi



Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

How many moves are made by this algorithm?


M(n) be the number of moves made by the above algorithm


M(n) = 2M(n-1) + 1  with M(1) = 1


So, M(n) = ?



Catalan Numbers
How many paths are there in the grid from (0,0) to (n,n) without ever 
crossing over to the y>x region?


Any path can be constructed as follows


Pick minimum k>0 s.t. (k,k) reached


(0,0) → (1,0) ➾ (k,k-1) → (k,k) ➾ (n,n)  
where ➾ denotes a Catalan path


Cat(n) = Σk=1 to n Cat(k-1)⋅Cat(n-k)


Cat(0) = 1


So, Cat(n) = ?



Recursive Definitions

E.g.,  f(0) = 1 
       f(n) = n⋅f(n-1)      ∀n∈Z s.t. n>0 


f(n) = n ⋅ (n-1) ⋅ ... ⋅ 1 ⋅ 1 = n!


This is the formal definition of n! (without using “...”)


A recursive program to compute factorial: 
 
factorial(n∈N)  {  

   if (n==0) return 1;  

   else return n*factorial(n-1);  

}

Recurrence relation

Initial Condition



Question

f(0) = 5;  f(n) = 3⋅f(n-1) for n∈Z+. Then for n∈N 

   A.  f(n) = 5n+1 

     B.  f(n) = 3⋅5n 

     C.  f(n) = 5⋅3n 

     D.  f(n) = 15⋅3n 

     E.  None of the above 

     

1

YSQR



Fibonacci Sequence

F(0) = 0 
F(1)  = 1 
F(n) = F(n-1) + F(n-2)  ∀n ≥ 2


F(n) called the nth Fibonacci number  (starting 
with 0th)



Counting Strings

How many ternary strings of length n which don’t have “00” 
as a substring?


Set up a recurrence


A(n) = # such strings starting with 0


B(n) = # such strings not starting with 0


A(n) = B(n-1) .  B(n) = 2(A(n-1) + B(n-1)).   [Why?]


Initial condition:  A(0) = 0; B(0) = 1 (empty string)


Required count: A(n) + B(n)


Can rewrite in terms of just B


B(0) = 1. B(1) = 2.  B(n) = 2B(n-1) + 2B(n-2)   ∀n ≥ 2


Required count: B(n-1) + B(n).



Question

Consider bit strings of length n which have “01” as a 

substring. Let A(n) = # such strings starting with 0 and 

B(n)  = # such strings starting with 1. Then: 

 

    A.  A(n) = A(n-1) + B(n-1) 

     B.  A(n) = A(n-1) + 2n-2  

     C.  A(n) = 2n-1 + B(n-1) 

     D.  A(n) = 1 + B(n-1) 

     E.  None of the above 

     

2

JAWS

A(n) = A(n-1) + 2n-2. 
B(n) = A(n-1) + B(n-1)

Exercise: Count directly, 
by counting “bad” strings



Closed Form
Sometimes possible to get a “closed form” expression for a 
quantity defined recursively (in terms of simpler operations)


e.g.,  f(0)=0  &  f(n) = f(n-1) + n, ∀n>0


f(n) = n(n+1)/2


Sometimes, we just give it a name


e.g., n!, Fibonacci(n), Cat(n)


In fact, formal definitions of integers, addition, 
multiplication etc. are recursive


e.g., 0⋅a = 0  &  n⋅a = (n-1)⋅a + a, ∀n>0


e.g., 20 = 1  & 2n = 2⋅2n-1


Sometimes both


e.g., Fibonacci(n), Cat(n) have closed forms (later)



Understanding a Recursive 
Definition

Suppose  g(1) = 1  &  g(n) = 2 g(n-1) + n   ∀n>1.


g(n) is growing “exponentially” by (more than) doubling for 
each increment in n


g(n) = ?


Make a “guess”. Then prove by induction


How do we guess? (More ideas later.)


g(n) = n + 2⋅g(n-1)  
     = n + 2⋅( (n-1) + 2⋅g(n-2) ) 
     = n + 2⋅( (n-1) + 2⋅( (n-2) + 2⋅g(n-3) )  
            = n + 2.(n-1) + 22.(n-2) + 23.g(n-3)


g(n) = ∑k=0 to n-1  2k⋅(n-k)    (make sure the base case matches)



Recursion & Induction
Claim: F(3n) is even, where  F(n) is the nth Fibonacci number, ∀n≥0


Proof by induction:


Base case:   
n=0:  F(3n) = F(0) = 0 ✔   n=1: F(3n) = F(3) = 2 ✔


Induction step: for all k≥2 
 Induction hypothesis: suppose for 0≤n≤k-1, F(3n) is even 
 To prove:  F(3k) is even


F(3k) = F(3k-1) + F(3k-2) = ?


Unroll further: F(3k-1) = F(3k-2) + F(3k-3) 
F(3k) = 2⋅F(3k-2) + F(3(k-1)) = even, by induction hypothesis

0 1 1 2 3 5 8 13 21 34…
Stronger claim (but easier to prove by induction): 
F(n) is even iff n is a multiple of 3



Recursion & Induction
f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has two distinct (possibly complex) 
solutions, x and y


Claim:  f(n) = p⋅xn + q⋅yn  for some p,q


Base cases satisfied by p=(d-cy)/(x-y), q=(d-cx)/(y-x) 


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = pxn + qyn 

   To prove:  f(k) = pxk - qyk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a⋅(pxk-1+qyk-1)  +  b⋅(pxk-2+qyk-2) - pxk - qyk + pxk + qyk 
     = - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk  ✓ 

Example: 
Fibonacci 
numbers

Characteristic equation:

replace f(n) by Xn in the recurrence



Recursion & Induction
f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has only one solution, x≠0.                    
i.e., a=2x, b=-x2, so that X2 - aX - b = (X-x)2.                           

Claim:  f(n) = (p + q⋅n)xn  for some p,q


Base cases satisfied by p = c, q = d/x-c 


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = (p + qn)yn 

   To prove:  f(k) = (p+qk)xk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a (p+qk-q)xk-1 + b⋅(p+qk-2q)xk-2  - (p+qk)xk + (p+qk)xk 
     = -(p+qk)xk-2(x2-ax-b) - qxk-2(ax-2b) + (p+qk)xk = (p+qk)xk  ✓ 



Solving a Recurrence

Often, once a correct guess is made, easy to prove by induction


How does one guess?


Will see a couple of approaches


By unrolling the recursion into a chain or a “rooted tree”


Using the “method of generating functions”  (next time)



Unrolling a recursion

Often helpful to try “unrolling” the recursion to see 
what is happening


e.g., expand into a chain:


T(0) = 0  &  T(n) = T(n-1) + n2   ∀n≥1


T(n-1) = T(n-2) + (n-1)2,  T(n-2) = T(n-3) + (n-2)2, ...


T(n) = n2 + (n-1)2 + (n-2)2 + T(n-3)   ∀n≥3


T(n) = ∑k=1 to n  k2 + T(0)      ∀n≥0



Another example
T(1) =  0  
T(N) = T(⎣N/2⎦) + 1   ∀N≥2


Let us consider N of the form 2n (so we can forget the floor)


T(N) = 1 + T(N/2)  
      = 1 + 1 + T(N/4)  
      = ...  
      = 1 + 1 + ... + T(1)


T(2n) =  n


T(N)  = log2 N  (or simply log N)  for N a power of 2


General N? T monotonically increasing (by strong induction). So, 
T(2⎣log N⎦) ≤ T(N) ≤ T(2⎡log N⎤) : i.e.,  ⎣log N⎦≤ T(N) ≤⎡log N⎤ 


In fact, T(N) = T(2⎣log N⎦) =⎣log N⎦ (Exercise)

How many 1’s 
are there?

A slowly 
growing function



Tower of Hanoi
Recursive algorithm (optimal for 3 pegs)


Transfer(n,A,C): 
  If n=1, move the single disk from peg A to peg C 
  Else 
     Transfer(n-1,A,B) (leaving the largest disk out of play) 
     Move largest disk to peg C 
     Transfer(n-1,B,C) (leaving the largest disk out of play)

M(n) be the number of moves made by the above algorithm


M(n) = 2M(n-1) + 1  with M(1) = 1


Unroll the recursion into a “rooted tree”




A tree, with a special node, designated as the root


Typically drawn “upside down”


Parent and child relation: u is v’s parent if the 
unique path from v to root contains edge {v,u}  
(parent unique; root has no parent)


If u is v’s parent v, then v is a child of u


u is an ancestor of v, and v a descendent of 
u if the v-root path passes through u


Leaf is redefined for a rooted tree, as a 
node with no child 


Root is a leaf iff it has degree 0 
(if deg(root)=1, not called a leaf)

root

a 
child 
 of u

the 
parent 
of v

a leaf

u

v

Rooted Tree



Leaf: no children.  Internal node: has a child


Ancestor, descendant: partial orders


Subtree rooted at u: with all descendants of u


Depth of a node: distance from root.  
Height of a tree: maximum depth


Level i: Set of nodes at depth i.


Note: tree edges are between adjacent levels


Arity of a tree: Max (over all nodes) 
number of children. m-ary if arity ≤ m.


Full m-ary tree: Every internal node  
has exactly m children.  
Complete & Full: All leaves at same level

root

a 
child 
 of u

the 
parent 
of v

a leaf

u

v

Rooted Tree



Number of nodes in Complete & Full m-ary tree


One root node with m children at level 1


Each level 1 node has m children at level 2


m2 nodes at level 2


At level i, mi nodes


mh leaves, where h is the height


Total number of nodes:


m0 + m1 + m2 + … + mh = (mh+1-1)/(m-1)


Prove by induction:  
(mh-1)/(m-1) + mh = (mh+1-1)/(m-1)


Binary tree (m=2)


2h leaves, 2h-1 internal nodes

root

a 
child 
 of u

the 
parent 
of v

a leaf

u

v

Rooted Tree



1

1
M(1)

Tower of Hanoi

M(1) = 1 
M(n) = 2M(n-1) + 1 

1

1M(3)

M(2)

M(1)
1

1M(2)

M(1)
1

M(1)

Doing it bottom-up. 
Could also think 

top-down



M(1) = 1 
M(n) = 2M(n-1) + 1 
 

1

1

1

1 1

1

1

Exponential growth


M(2) = 3, M(3) = 7, ...


M(n) = #nodes in a complete and full binary tree of 
height n-1


M(n) = 2n - 1


Tower of Hanoi


