Recursive Definitions

Generating Functions

Lecture 18



Generating Functions

@ A generating function is an alternate representation of an
infinite sequence, which allows making useful deductions
about the sequence (including, possibly, a closed form)

@ We will focus on "Ordinary Generating Functions”

@ Sequence f(0), f(1), ... is represented as the formal expression
Ge(X) 2 f(O) + f(1)- X + f(2)-X2 + ... (ad infinitum)

o i.e., for f: N—R, we define G¢(X) 2 Xks0 f(k): Xk

o e.g., If f(k) = ak for some acRR, G X) = 2,0 ak- Xk



Generating Functions

@ Generating functions sometimes have a succinct
representation

@ e.g., For f(k) = ak for some aeR, G(X) = Zk;o ak- Xk

@ If we substituted for X a real number x sufficiently close
to O, we have |lax| < 1 and this would converge to 1/(1-ax)

@ So we write Gf(X) = 1/(1-aX) (for sufficiently small |X]).
This will later let us manipulate G¢X) algebraically



Extended Binomial Theorem

@ A useful tool for manipulating/analysing generating functions

aa—1)...(a—k+1)

@ For acR, <a> = (keZ+), and <a> =]
k k! 0)

® Extended binomial theorem:

For Ixl<1, aeR, (1+x)e = Xks0 <Z> - xk

@ Useful in finding a closed form for f given Gt of certain forms

o e.g., GA(X) = 1/(1-X). Then, S0 F(K)-Xk = (1-X)-!

@ <_k1> = (-1)(-2)...(-K)/k! = (-1)k = (1-X)! = S0 Xk = f(k)=1

o Similarly, (‘kz) = (<2)(=3)..(-k-1)/K! = (=1)¥(k+1)
— 1/(1-X)2 = Xks0 (k+1)- Xk



Generating Functions from
Recurrence Relations

@ Recurrence relations for f often make it easy to compute an
expression for the generating function Gt

@ e.g., f(0)=0, f(1) = 1. f(n) = f(n-1) + f(n-2), vn22. [Fibonacci]

@ f(n)-Xn = X-f(n-1)- Xn-1 + X2-f(n-2)- Xn-2 (for n22)
— Ge(X) = £(O) + f(1)- X + X-(GX)-f(0)) + X2-G¢(X)
— GH(X) (1-X-X23) = f(0) + (f(1)-f(0))- X

@ Ge(X) = X/(1-X-X2)

@ More generally:
f(0) =c. f(1) =d. f(n) = a-f(n-1) + b-f(n-2), vn22

@ GH{X) = (c + (d-ac)X)/(1-aX-bX2)



Generating Functions from
Recurrence Relations

@ e.g., Let g(k) = Zj-0 to k f(j)- What is G4(X), in terms of G¢(X)?
@ Recursive definition: g(0) = f(0). g(n) = g(n-1) + f(n), vn2l.
@ So, vk21, g(k)- Xk = g(k-1)- Xk-1-X + f(k)- Xk

@ Gg(X) = g(0) + X-G4(X) + (G¢(X) - f(0))

8 G4(X) = G¢(X)/(1-X)



Generating Functions for
Series Summation

@ e.g., g(K) = Zj-0 ton (j+1)2
@ Gg(X) = GH(X)/(1-X) where f(k) = (k+1)2

@ Consider G(X) =1+ X + X2 + ... =1/(1-X)
@G (X)=1+2X+3-X2+.. =1/(1-X)2
@ Let HX) = XG(X) =X+ 2-X2 4+ 3-X3+ .. =X/(1-X)2
@ SoH(X) =14+ 22X+ 32:X2+ .. =1/(1-X)2 + 2X/(1-X)3

= (1+X)/(1-X)3
is the generating function of f(k) = (k+1)2.

@ Gy(X) = (1+X)/(1-X)4.

@ Now, can use ext. binomial theorem to compute coeff. of Xn



Generating Functions for
Counting Combinations

@ e.g., Let f(n) = number of ways to throw n balls into d bins
(for some fixed number d)

@ Solution 1: Use stars and bars
@ Solution via the generating function G¢(X)

@ Coefficient of Xn in G¢(X) must count the number of
(non-negative integer) solutions of n; + ... + ng = n

@ Can write G X) = (1+X+X2+...)d
@ So, GH(X) = [1/(1-X)]d = (1-X)-d

@ Coefficient of Xn = <_ )(-1)n
n
= d(d+1)...(d+n-1)/n! = C(d+n-1,d-1)



Generating Functions for
Counting Combinations

@ e.g., f(n) = #ways to make a total of $n using $1, $5 and $10
notes. Two variants, f; and f2

@ fi: order doesnt matter (e.g., fi(7)=2: $7=2x$1+1x$5 and $7=7x$1)
@ f2: order matters (e.g., f2(7)=4 as (5,1,1), (1,5,1), (1,1,5), (1,...,1))

a Gg(X) = (1+X+X2+...) (14+X5+X10+...) - (14+ X104 X204 ..
= 1/[ (1-X)-(1-X5) - (1-X10) ]

d Gry(X) = 7

@ Suppose exactly t notes were to be used. #ways to make
$n equals coefficient of Xn in (X+X5+X10)t

3 Gry(X) = Shro (X4 X5+XI0)t = 1/(1-(X+X5+X10))



Closed Forms

@ Goal: find a closed form expression for the coefficient of Xn in
G(X), when G(X) has a “nice” expression

@ e.g., Gi(X) = 1/(1-aX) = f(k) = ak
@ e.g., Gi(X) = (a+ BX)/(1-aX-bX?)

@ We saw G¢(X) = (c + (d-ac)X)/(1-aX-bX2)
for: f(0) =c. f(1) =d. f(n) = a-f(n-1) + b-f(n-2), vn>2

@ Writing Z = X-1, we have GHX) = (a.Zz2+ $z)/(Z2-az-b)
@ Let (Z2-azZ-b) =(Z-x)(Z-y).

® Two cases: X£y and x=Yy



Closed Forms

8 Gi(X) = (a+ PX)/(1-aX-bX2) = (0zZ2+ $Z)/(Z2-aZ-b), with Z = X-L.

@ (Z2-aZ-b) =(Z-x)(Z-y). (So a=x+Yy, -b=xy.)

@ Case 1. x#v.
8 1/(Z%-az-b) = [ 1/(zZ-x) - 1/(Z-y) 1/(x-y)
o Z/(Z-x) = 1/(1-xX) = Zks0 xk- XK

@ So, (az2+ BZ)/(Z2-az-b) = (azZ+ P)/(x-y) Zkso (Xk-yk)- Xk
= Shoo (axk+ioyki)g B(xkoyk))/(x-y)- XK
= 20 (pX*+qyk)- Xk, where p=(ax+p)/(x-y), q=(ay+f)/(y-x)

@ f(n) = coefficient of Xn = pxn + gqyn

@ a=C, P=d-ac=d-(x+y)c = p=(d-yc)/(x-y), q=(d-xc)/(y-x),



Closed Forms

@ f(0) =c. f(1) =d. f(n) = a-f(n-1) + b-f(n-2) wvn22.

® Suppose X2 - aX - b = 0 has two distinct (possibly complex)
solutions, x and vy

@ Claim: f(n) = p-x" + q-y» for some p,q
@ Base cases satisfied by p=(d-cy)/(x-y), q=(d-cx)/(y-x)

@ Inductive step: for all k22
Induction hypothesis: vns.t. 1 < n < k-1, f(n) = px" + qyn
To prove: f(k) = pxk - qyk

@ f(k) = a-f(k-1) + b-f(k-2)

= a.(pxk—l.l_qyk—l) + b.(ka—Z_l_qyk-Z) e ka 1 qyk + ka + qyk
= - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk v/



Closed Forms

8 Gi(X) = (a+ PX)/(1-aX-bX2) = (0zZ2+ $Z)/(Z2-aZ-b), with Z = X-L.

@ (Z2-aZ-b) =(Z-x)(Z-y). (So a=x+Yy, -b=xy.)

® Case 2: x=V.

o (az2+ pz)/(zZ2-az-b) = (az2+ BZ)/(Z-x)? = (a+ PX)/(1-xX)?
& Will use 1/(1-aX)2 = Sks0 (k+1).ak- Xk

-2
@ From the extended binomial theorem with ( ! ): (-1)k(k+1)

@ Or, by taking derivative of G(X) = 1/(1-aX) = ;0 ak- Xk
we get G'(X) = a/(1-aX)? = Zi»1 k.ak-Xk-1
3 (a+ PX)/(1-xX)2 = S0 (04 PX)- (K+1)- xk- Xk
= S0 (0(K+1)-xK + B-k-xk-1)- XK
= S0 (p+ gk)xk-Xk, where p=a, q=(a+f/x)



Closed Forms

@ f(0) =c. f(1) =d. f(n) = a-f(n-1) + b-f(n-2) wvn22.

@ Suppose X2 - aX - b = O has only one solution, x+O0.
i.e., a=2X, b=-x2, so that X2 - aX - b = (X-x)2.

@ Claim: f(n) = (p + q'n)x" for some p,q
® Base cases satisfied by p = ¢, q = d/x-c

@ Inductive step: for all k22
Induction hypothesis: vns.t. 1 < n < k-1, f(n) =(p + gn)y"
To prove: f(k) = (p+qk)xk

@ f(k) = a-f(k-1) + b-f(k-2)
= a (p+qk-q)xk-! + b-(p+gk-2q)xk-2 - (p+qk)xk + (p+gk)xk
= -(p+qk)xk-2(x2-ax-b) - qxk-2(ax-2b) + (p+qk)xk = (p+qk)xk v



Catalan Numbers

@ How many paths are there in the grid from (0,0) to (n,n) without ever

crossing over to the y>x region?
@ Any path can be constructed as follows
@ Pick minimum k>0 s.t. (k,k) reached

2 (0,0) — (1,0) = (kKk-1) — (k,K) = (n,n)
where = denotes a Catalan path

@ Cat(n) = k-1 to n Cat(k-1)-Cat(n-k)

@ Cat(0) =1

@ So, Cat(n) = ?



Catalan Numbers

® Cat(n) = ka1 1o n Cat(k-1)-Cat(n-k) wvn2=1

@ Cat(n) Xr = ko1 to n Cat(k-1)-Cat(n-k) - Xn,
= term of X7 in X:(ZkCat(k-1) Xk-1)-(ZkCat(n-k) Xn-k), wn2=l

® For n=0, we have Cat(0) X0 =1
@ Geat(X) = 1 + X Geat(X) Geat(X)
@ Solving for Gin X-G2 - G + 1 = 0, we have G=[1+J/(1-4X)]/(2X)

® We need limx o Geat(X) = Cat(0) = 1 L'Hopitals Rule J

@ limx—o [1+J(1-4X)]1/(2X) = limx—o * (-4/[24(1-4X)])/2 = +(-1)
@ So we take Geat(X) = [1-4/(1-4X)]/(2X)
® Then, what is the coefficient of Xn in Gcat(X)?




Catalan Numbers

® Geat(X) = [1-~(1-4X)1/(2X)
@ Then, what is the coefficient of Xk in Geat(X)?

® Use extended binomial theorem:
1/2 2k —2
(1-4X)”* = Zks0 ( - )(-4X)k =1 + Zka —< e > 2/ k

o whtie (12 2) = (1/2)(=1/2) (<3/2) (-5/2) .. (-(2k-3)/2) /K!

= (-1)k-1(1-1-3-...-(2k-3))/[k! 2K] = (-l)k‘1<2kk__12)/[k 22k-1]
2k 2k
@ Cat(k) = Coefficient of Xk = < . )'2/(k+1)-l/2 = ( ' >/(k+1)



