Recursive Definitions Generating Functions Lecture 18

Generating Functions

- A generating function is an alternate representation of an infinite sequence, which allows making useful deductions about the sequence (including, possibly, a closed form)
- We will focus on "Ordinary Generating Functions"
- Sequence f(0), f(1), ... is represented as the formal expression G_f(X) ≜ f(0) + f(1)·X + f(2)·X² + ... (ad infinitum)

o e.g., If f(k) = a^k for some a∈ℝ, G_f(X) = $\Sigma_{k \ge 0}$ a^k·X^k

Generating Functions

- Generating functions sometimes have a succinct representation
- o e.g., For f(k) = a^k for some a∈ℝ, G_f(X) = $\Sigma_{k \ge 0}$ a^k·X^k
 - If we substituted for X a real number x sufficiently close to 0, we have |ax| < 1 and this would converge to 1/(1-ax)</p>
 - So we write $G_f(X) = 1/(1-aX)$ (for sufficiently small |X|). This will later let us manipulate $G_f(X)$ algebraically

• A useful tool for manipulating/analysing generating functions • For $a \in \mathbb{R}$, $\begin{pmatrix} a \\ k \end{pmatrix} \triangleq \frac{a(a-1)\dots(a-k+1)}{k!}$ ($k \in \mathbb{Z}^+$), and $\begin{pmatrix} a \\ 0 \end{pmatrix} \triangleq 1$

Sector Extended binomial theorem:

For
$$|x| < 1$$
, $a \in \mathbb{R}$, $(1+x)^a = \Sigma_{k \ge 0} \begin{pmatrix} a \\ b \end{pmatrix} \cdot x^k$

• Useful in finding a closed form for f given G_f of certain forms • e.q., $G_f(X) = 1/(1-X)$. Then, $\sum_{k\geq 0} f(k) \cdot X^k = (1-X)^{-1}$

Similarly, $\binom{-2}{k} = (-2)(-3)...(-k-1)/k! = (-1)^{k}(k+1)$ $\Rightarrow 1/(1-X)^{2} = \Sigma_{k\geq 0} (k+1) \cdot X^{k}$

Generating Functions from Recurrence Relations

- Recurrence relations for f often make it easy to compute an expression for the generating function G_f
- e.g., f(0)=0, f(1) = 1. f(n) = f(n-1) + f(n-2), ∀n≥2. [Fibonacci]
- f(n)·Xⁿ = X·f(n-1)·Xⁿ⁻¹ + X²·f(n-2)·Xⁿ⁻² (for n≥2)
 $\Rightarrow G_f(X) = f(0) + f(1)·X + X·(G_f(X)-f(0)) + X²·G_f(X)
 \Rightarrow G_f(X) (1-X-X²) = f(0) + (f(1)-f(0))·X$
 - \odot G_f(X) = X/(1-X-X²)
- More generally: f(0) = c. f(1) = d. f(n) = a ⋅ f(n-1) + b ⋅ f(n-2), ∀n≥2
 - $G_{f}(X) = (c + (d-ac)X)/(1-aX-bX^{2})$

Generating Functions from Recurrence Relations

e.g., Let g(k) = ∑_{j=0} to k f(j). What is G_g(X), in terms of G_f(X)?
Recursive definition: g(0) = f(0). g(n) = g(n-1) + f(n), ∀n≥1.
So, ∀k≥1, g(k) ×^k = g(k-1) ×^{k-1} × + f(k) ×^k
G_g(X) = g(0) + X · G_g(X) + (G_f(X) - f(0))
G_g(X) = G_f(X)/(1-X)

Generating Functions for Series Summation
e.g., g(k) = Σ_{j=0} to n (j+1)²
G_g(X) = G_f(X)/(1-X) where f(k) = (k+1)²
Consider G(X) = 1 + X + X² + ... = 1/(1-X)

 $G'(X) = 1 + 2 \cdot X + 3 \cdot X^2 + ... = 1/(1-X)^2$

• Let $H(X) = X G(X) = X + 2 \cdot X^2 + 3 \cdot X^3 + ... = X/(1-X)^2$

So $H'(X) = 1 + 2^2 \cdot X + 3^2 \cdot X^2 + ... = 1/(1-X)^2 + 2X/(1-X)^3$ = $(1+X)/(1-X)^3$

is the generating function of $f(k) = (k+1)^2$.

• $G_g(X) = (1+X)/(1-X)^4$.

Now, can use ext. binomial theorem to compute coeff. of Xⁿ

Generating Functions for Counting Combinations

- e.g., Let f(n) = number of ways to throw n balls into d bins (for some fixed number d)
 - Solution 1: Use stars and bars
 - Solution via the generating function $G_f(X)$
 - Coefficient of Xⁿ in G_f(X) must count the number of (non-negative integer) solutions of $n_1 + ... + n_d = n$
 - Can write $G_f(X) = (1+X+X^2+...)^d$
 - So, $G_f(X) = [1/(1-X)]^d = (1-X)^{-d}$

Solution Coefficient of Xⁿ = $\binom{-d}{n}(-1)^n$ = d(d+1)...(d+n-1)/n! = C(d+n-1,d-1)

Generating Functions for Counting Combinations

e.g., f(n) = #ways to make a total of \$n using \$1, \$5 and \$10 notes. Two variants, f1 and f2

 f1: order doesn't matter (e.g., f1(7)=2: \$7=2×\$1+1×\$5 and \$7=7×\$1)
 f2: order matters (e.g., f2(7)=4 as (5,1,1), (1,5,1), (1,1,5), (1,...,1))
 Gf1(X) = (1+X+X²+...) · (1+X⁵+X¹⁰+...) · (1+X¹⁰+X²⁰+...) = 1/[(1-X) · (1-X⁵) · (1-X¹⁰)]

• $G_{f_2}(X) = ?$

Suppose exactly t notes were to be used. #ways to make
 \$n equals coefficient of Xⁿ in (X+X⁵+X¹⁰)[†]

G_{f2}(X) = ∑_{t≥0} (X+X⁵+X¹⁰)[†] = 1/(1-(X+X⁵+X¹⁰))

Goal: find a closed form expression for the coefficient of Xⁿ in G(X), when G(X) has a "nice" expression

- @ e.g., $G_f(X) = 1/(1-aX) \implies f(k) = a^k$
- e.g., $G_f(X) = (\alpha + \beta X)/(1-\alpha X-bX^2)$
 - We saw G_f(X) = (c + (d-ac)X)/(1-aX-bX²) for: f(0) = c. f(1) = d. f(n) = a · f(n-1) + b · f(n-2), ∀n≥2
 - Writing Z = X⁻¹, we have $G_f(X) = (\alpha Z^2 + \beta Z)/(Z^2 \alpha Z b)$

 - Two cases: x≠y and x=y

- $G_f(X) = (\alpha + \beta X)/(1-\alpha X-bX^2) = (\alpha Z^2 + \beta Z)/(Z^2-\alpha Z-b)$, with $Z = X^{-1}$.
- Ø Case 1: x≠y.
 - $1/(Z^2-aZ-b) = [1/(Z-x) 1/(Z-y)]/(x-y)$
 - $Z/(Z-x) = 1/(1-xX) = \sum_{k\geq 0} x^k \cdot X^k$
 - So, $(\alpha Z^2 + \beta Z)/(Z^2 \alpha Z b) = (\alpha Z + \beta)/(x y) \cdot \Sigma_{k \ge 0} (x^k y^k) \cdot X^k$ = $\Sigma_{k \ge 0} (\alpha (x^{k+1} - y^{k+1}) + \beta (x^k - y^k))/(x - y) \cdot X^k$ = $\Sigma_{k \ge 0} (p x^k + q y^k) \cdot X^k$, where $p = (\alpha x + \beta)/(x - y)$, $q = (\alpha y + \beta)/(y - x)$

• $f(n) = coefficient of X^n = px^n + qy^n$

 $a = c, \beta = d - ac = d - (x+y)c \implies p = (d - yc)/(x-y), q = (d - xc)/(y-x),$

- Suppose X² aX b = 0 has two distinct (possibly complex) solutions, x and y
- Claim: $f(n) = p \cdot x^n + q \cdot y^n$ for some p,q

Recall

- Base cases satisfied by p=(d-cy)/(x-y), q=(d-cx)/(y-x)
- Inductive step: for all k≥2
 Induction hypothesis: ∀n s.t. 1 ≤ n ≤ k-1, f(n) = pxⁿ + qyⁿ
 To prove: f(k) = px^k qy^k

$$f(k) = a \cdot f(k-1) + b \cdot f(k-2)$$
 $= a \cdot (px^{k-1}+qy^{k-1}) + b \cdot (px^{k-2}+qy^{k-2}) - px^k - qy^k + px^k + qy^k$
 $= -px^{k-2}(x^2-ax-b) - qy^{k-2}(y^2-ay-b) + px^k + qy^k = px^k + qy^k$

- $G_f(X) = (\alpha + \beta X)/(1-\alpha X-bX^2) = (\alpha Z^2 + \beta Z)/(Z^2-\alpha Z-b)$, with $Z = X^{-1}$.

(αZ²+ βZ)/(Z²-aZ-b) = (αZ²+ βZ)/(Z-x)² = (α+ βX)/(1-xX)²
 Will use 1/(1-aX)² = Σ_{k≥0} (k+1).a^k·X^k

• From the extended binomial theorem with $\binom{-2}{k} = (-1)^{k}(k+1)$

• Or, by taking derivative of $G(X) = 1/(1-aX) = \sum_{k\geq 0} a^{k} \cdot X^k$ we get $G'(X) = a/(1-aX)^2 = \sum_{k\geq 1} k \cdot a^k \cdot X^{k-1}$

 $(\alpha + \beta X)/(1-XX)^{2} = \sum_{k \ge 0} (\alpha + \beta X) \cdot (k+1) \cdot X^{k} \cdot X^{k}$ $= \sum_{k \ge 0} (\alpha \cdot (k+1) \cdot X^{k} + \beta \cdot k \cdot X^{k-1}) \cdot X^{k}$

= $\Sigma_{k\geq 0}$ (p+ qk)x^k·X^k, where p= α , q=(α + β /x)

- Suppose $X^2 aX b = 0$ has only one solution, $x \neq 0$. i.e., a=2x, $b=-x^2$, so that $X^2 - aX - b = (X-x)^2$.
- Claim: $f(n) = (p + q \cdot n)x^n$ for some p,q

Recall

- Base cases satisfied by p = c, q = d/x-c
- Inductive step: for all k≥2
 Induction hypothesis: ∀n s.t. 1 ≤ n ≤ k-1, f(n) = (p + qn)yⁿ
 To prove: f(k) = (p+qk)x^k

•
$$f(k) = a \cdot f(k-1) + b \cdot f(k-2)$$

= $a (p+qk-q)x^{k-1} + b \cdot (p+qk-2q)x^{k-2} - (p+qk)x^k + (p+qk)x^k$

= $-(p+qk)x^{k-2}(x^2-ax-b) - qx^{k-2}(ax-2b) + (p+qk)x^k = (p+qk)x^k$

Catalan Numbers

How many paths are there in the grid from (0,0) to (n,n) without ever crossing over to the y>x region?

Any path can be constructed as follows
Pick minimum k>0 s.t. (k,k) reached

O (0,0) → (1,0) ⇒ (k,k-1) → (k,k) ⇒ (n,n)
 where ⇒ denotes a Catalan path

• Cat(n) = $\sum_{k=1 \text{ to } n} \text{Cat}(k-1) \cdot \text{Cat}(n-k)$

Cat(0) = 1

Catalan Numbers

 $\odot Cat(n) X^n = \sum_{k=1 \text{ to } n} Cat(k-1) \cdot Cat(n-k) \cdot X^n$ = term of Xⁿ in X · $(\Sigma_k Cat(k-1) \times X^{k-1}) \cdot (\Sigma_k Cat(n-k) \times X^{n-k}), \forall n \ge = 1$ There are a provided as $X^{0} = 1$ and $X^{0} = 1$ $G_{Cat}(X) = 1 + X G_{Cat}(X) G_{Cat}(X)$ Solving for G in $X \cdot G^2 - G + 1 = 0$, we have $G = \frac{1 \pm \sqrt{1-4X}}{(1-4X)}$ $\lim_{X\to 0} \frac{[1\pm\sqrt{(1-4X)}]}{(2X)} = \lim_{X\to 0} \frac{1}{2} \frac{(-4/[2\sqrt{(1-4X)}])}{2} = \frac{1}{2} \frac{(-1)}{2} \frac{1}{2} \frac{1$ • So we take $G_{cat}(X) = \frac{1-\sqrt{1-4X}}{(2X)}$ Then, what is the coefficient of X^n in $G_{cat}(X)$?

Catalan Numbers

 $G_{cat}(X) = [1 - \sqrt{(1 - 4X)}]/(2X)$ • Then, what is the coefficient of X^k in $G_{cat}(X)$? Use extended binomial theorem: $(1-4X)^{\frac{1}{2}} = \sum_{k\geq 0} {\binom{1/2}{k}} (-4X)^{k} = 1 + \sum_{k\geq 1} - {\binom{2k-2}{k-1}} \cdot 2 / k$ where $\binom{1/2}{k} = (1/2)(-1/2)(-3/2)(-5/2) \dots (-(2k-3)/2)/k!$ $= (-1)^{k-1}(1 \cdot 1 \cdot 3 \cdot ... \cdot (2k-3))/[k! 2^{k}] = (-1)^{k-1} \binom{2k-2}{k-1} / [k 2^{2k-1}]$ Cat(k) = Coefficient of X^k = $\binom{2k}{k} \cdot \frac{2}{(k+1)} \cdot \frac{2}{2} = \binom{2k}{k} / \frac{(k+1)}{k}$