
Recursive Definitions 
Generating Functions

Lecture 18



Generating Functions

A generating function is an alternate representation of an 
infinite sequence, which allows making useful deductions 
about the sequence  (including, possibly, a closed form)


We will focus on “Ordinary Generating Functions”


Sequence f(0), f(1), … is represented as the formal expression 
Gf(X) ≜ f(0) + f(1)⋅X + f(2)⋅X2 + … (ad infinitum)


i.e., for f : N→R, we define  Gf(X) ≜ Σk≥0 f(k)⋅Xk


e.g., If f(k) = ak for some a∈R, Gf(X) = Σk≥0 ak⋅Xk



Generating Functions

Generating functions sometimes have a succinct 
representation


e.g., For f(k) = ak for some a∈R, Gf(X) = Σk≥0 ak⋅Xk


If we substituted for X a real number x sufficiently close 
to 0, we have |ax| < 1 and this would converge to 1/(1-ax)


So we write Gf(X) = 1/(1-aX)  (for sufficiently small |X|). 
This will later let us manipulate Gf(X) algebraically



Extended Binomial Theorem
A useful tool for manipulating/analysing generating functions


For a∈R,  ≜  (k∈Z+), and  ≜ 1


Extended binomial theorem:  

          For |x|<1, a∈R,  (1+x)a = Σk≥0 ⋅xk


Useful in finding a closed form for f given Gf of certain forms


e.g., Gf(X) = 1/(1-X). Then, Σk≥0 f(k)⋅Xk = (1-X)-1


 = (-1)(-2)…(-k)/k! = (-1)k ⇒ (1-X)-1 = Σk≥0 Xk ⇒ f(k)=1


Similarly,  = (-2)(-3)…(-k-1)/k! = (-1)k(k+1) 

         ⇒ 1/(1-X)2 = Σk≥0 (k+1)⋅Xk   
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Generating Functions from 
Recurrence Relations

Recurrence relations for f often make it easy to compute an 
expression for the generating function Gf


e.g., f(0)=0, f(1) = 1.  f(n) = f(n-1) + f(n-2), ∀n≥2.    [Fibonacci]


f(n)⋅Xn = X⋅f(n-1)⋅Xn-1 + X2⋅f(n-2)⋅Xn-2  (for n≥2) 
⇒ Gf(X) = f(0) + f(1)⋅X + X⋅(Gf(X)-f(0)) + X2⋅Gf(X) 
⇒ Gf(X) (1-X-X2) = f(0) + (f(1)-f(0))⋅X


Gf(X) = X/(1-X-X2)


More generally: 
f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2), ∀n≥2


Gf(X) = (c + (d-ac)X)/(1-aX-bX2)



Generating Functions from 
Recurrence Relations

e.g., Let g(k) = Σj=0 to k f(j). What is Gg(X), in terms of Gf(X)?


Recursive definition:  g(0) = f(0).  g(n) = g(n-1) + f(n), ∀n≥1.


So, ∀k≥1, g(k)⋅Xk = g(k-1)⋅Xk-1⋅X + f(k)⋅Xk


Gg(X) = g(0) + X⋅Gg(X) + (Gf(X) - f(0))


Gg(X) = Gf(X)/(1-X)



Generating Functions for 
Series Summation

e.g., g(k) = Σj=0 to n (j+1)2


Gg(X) = Gf(X)/(1-X) where f(k) = (k+1)2


Consider G(X) = 1 + X + X2 + …  = 1/(1-X)


G’(X) = 1 + 2⋅X + 3⋅X2 + …    = 1/(1-X)2


Let H(X)  = X G(X) = X + 2⋅X2 + 3⋅X3 + …   = X/(1-X)2


So H’(X) = 1 + 22⋅X + 32⋅X2 + …  = 1/(1-X)2 + 2X/(1-X)3 

                                        = (1+X)/(1-X)3 
is the generating function of f(k) = (k+1)2.  


Gg(X) = (1+X)/(1-X)4.  


Now, can use ext. binomial theorem to compute coeff. of Xn 



Generating Functions for 
Counting Combinations

e.g., Let f(n) = number of ways to throw n balls into d bins 
(for some fixed number d)


Solution 1: Use stars and bars


Solution via the generating function Gf(X)


Coefficient of Xn in Gf(X) must count the number of 
(non-negative integer) solutions of n1 + … + nd = n


Can write Gf(X) = (1+X+X2+…)d


So, Gf(X) = [1/(1-X)]d = (1-X)-d


Coefficient of Xn = (-1)n  

                      = d(d+1)…(d+n-1)/n! = C(d+n-1,d-1)
(
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Generating Functions for 
Counting Combinations

e.g., f(n) = #ways to make a total of $n using $1, $5 and $10 
notes. Two variants, f1 and f2


f1: order doesn’t matter (e.g., f1(7)=2: $7=2×$1+1×$5 and $7=7×$1)


f2: order matters (e.g., f2(7)=4 as (5,1,1), (1,5,1), (1,1,5), (1,…,1))


Gf1(X) = (1+X+X2+…)⋅(1+X5+X10+…)⋅(1+X10+X20+…) 
        = 1/[ (1-X)⋅(1-X5)⋅(1-X10) ]


Gf2(X) = ?


Suppose exactly t notes were to be used. #ways to make 
$n equals coefficient of Xn in (X+X5+X10)t


Gf2(X) = Σt≥0 (X+X5+X10)t = 1/(1-(X+X5+X10))



Closed Forms
Goal: find a closed form expression for the coefficient of Xn in 
G(X), when G(X) has a “nice” expression


e.g., Gf(X) = 1/(1-aX) ⇒  f(k) = ak


e.g., Gf(X) = (α+ βX)/(1-aX-bX2)


We saw Gf(X) = (c + (d-ac)X)/(1-aX-bX2)  
for: f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2), ∀n≥2


Writing Z = X-1, we have Gf(X) = (αZ2+ βZ)/(Z2-aZ-b)


Let (Z2-aZ-b) =(Z-x)(Z-y).


Two cases: x≠y and x=y



Closed Forms

Case 1: x≠y.  


1/(Z2-aZ-b) = [ 1/(Z-x) - 1/(Z-y) ]/(x-y)


Z/(Z-x) = 1/(1-xX) = Σk≥0 xk⋅Xk


So, (αZ2+ βZ)/(Z2-aZ-b) = (αZ+ β)/(x-y)⋅Σk≥0 (xk-yk)⋅Xk 

= Σk≥0 (α(xk+1-yk+1)+ β(xk-yk))/(x-y)⋅Xk 

= Σk≥0 (pxk+qyk)⋅Xk, where p=(αx+β)/(x-y), q=(αy+β)/(y-x)


f(n) = coefficient of Xn = pxn + qyn


α=c, β=d-ac=d-(x+y)c ⇒  p=(d-yc)/(x-y), q=(d-xc)/(y-x),

Gf(X) = (α+ βX)/(1-aX-bX2) = (αZ2+ βZ)/(Z2-aZ-b), with Z = X-1.


(Z2-aZ-b) =(Z-x)(Z-y). (So a=x+y, -b=xy.)



f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has two distinct (possibly complex) 
solutions, x and y


Claim:  f(n) = p⋅xn + q⋅yn  for some p,q


Base cases satisfied by p=(d-cy)/(x-y), q=(d-cx)/(y-x) 


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = pxn + qyn 

   To prove:  f(k) = pxk - qyk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a⋅(pxk-1+qyk-1)  +  b⋅(pxk-2+qyk-2) - pxk - qyk + pxk + qyk 
     = - pxk-2(x2-ax-b) - qyk-2(y2-ay-b) + pxk + qyk = pxk + qyk  ✓ 
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Closed Forms

Case 2: x=y.  


(αZ2+ βZ)/(Z2-aZ-b) =  (αZ2+ βZ)/(Z-x)2 = (α+ βX)/(1-xX)2


Will use 1/(1-aX)2 = Σk≥0 (k+1).ak⋅Xk


From the extended binomial theorem with = (-1)k(k+1)


Or, by taking derivative of G(X) = 1/(1-aX) = Σk≥0 ak⋅Xk 

we get G’(X) = a/(1-aX)2 = Σk≥1 k.ak⋅Xk-1


(α+ βX)/(1-xX)2 = Σk≥0 (α+ βX)⋅(k+1)⋅xk⋅Xk  
                    = Σk≥0 (α⋅(k+1)⋅xk + β⋅k⋅xk-1)⋅Xk                                     
                    = Σk≥0 (p+ qk)xk⋅Xk, where p=α, q=(α+β/x)
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Gf(X) = (α+ βX)/(1-aX-bX2) = (αZ2+ βZ)/(Z2-aZ-b), with Z = X-1.


(Z2-aZ-b) =(Z-x)(Z-y). (So a=x+y, -b=xy.)



f(0) = c.  f(1) = d.  f(n) = a⋅f(n-1) + b⋅f(n-2)   ∀n≥2.


Suppose X2 - aX - b = 0 has only one solution, x≠0.                    
i.e., a=2x, b=-x2, so that X2 - aX - b = (X-x)2.                           

Claim:  f(n) = (p + q⋅n)xn  for some p,q


Base cases satisfied by p = c, q = d/x-c 


Inductive step: for all k≥2 
  Induction hypothesis:  ∀n s.t. 1 ≤ n ≤ k-1,  f(n) = (p + qn)yn 

   To prove:  f(k) = (p+qk)xk


f(k) = a⋅f(k-1) + b⋅f(k-2)  
     = a (p+qk-q)xk-1 + b⋅(p+qk-2q)xk-2  - (p+qk)xk + (p+qk)xk 
     = -(p+qk)xk-2(x2-ax-b) - qxk-2(ax-2b) + (p+qk)xk = (p+qk)xk  ✓ 
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Catalan Numbers
How many paths are there in the grid from (0,0) to (n,n) without ever 
crossing over to the y>x region?


Any path can be constructed as follows


Pick minimum k>0 s.t. (k,k) reached


(0,0) → (1,0) ➾ (k,k-1) → (k,k) ➾ (n,n)  
where ➾ denotes a Catalan path


Cat(n) = Σk=1 to n Cat(k-1)⋅Cat(n-k)


Cat(0) = 1


So, Cat(n) = ?



Catalan Numbers

Cat(n) = Σk=1 to n Cat(k-1)⋅Cat(n-k)  ∀n≥=1


Cat(n) Xn = Σk=1 to n Cat(k-1)⋅Cat(n-k) ⋅ Xn ,  
           = term of Xn in  X⋅(ΣkCat(k-1) Xk-1)⋅(ΣkCat(n-k) Xn-k),  ∀n≥=1


For n=0, we have Cat(0) X0 = 1


GCat(X) = 1 + X GCat(X) GCat(X) 


Solving  for G in  X⋅G2 - G + 1 = 0, we have G=[1±√(1-4X)]/(2X)


We need limX→0 Gcat(X) = Cat(0) = 1


limX→0 [1±√(1-4X)]/(2X) = limX→0 ± (-4/[2√(1-4X)])/2 = ±(-1) 


So we take Gcat(X) = [1-√(1-4X)]/(2X)


Then, what is the coefficient of Xn in Gcat(X)?

L’Hôpital’s Rule



Catalan Numbers

Gcat(X) = [1-√(1-4X)]/(2X)


Then, what is the coefficient of Xk in Gcat(X)?


Use extended binomial theorem:  

(1-4X)½  = Σk≥0 (-4X)k = 1 + Σk≥1 — ⋅ 2 / k


where  = (1/2)(-1/2) (-3/2) (-5/2) … (-(2k-3)/2) /k!  

        = (-1)k-1(1⋅1⋅3⋅…⋅(2k-3))/[k! 2k]  = (-1)k-1 /[k 22k-1]


Cat(k) = Coefficient of Xk = ⋅2/(k+1)⋅1/2 = /(k+1)
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