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How it scales
In analysing running time (or memory/power consumption) of 
an algorithm, we are interested in how it scales as the 
problem instance grows in “size”


Running time on small instances of a problem are often not 
a serious concern (anyway small)


Also, exact time/number of steps is less interesting


Can differ in different platforms. Not a property of the 
algorithm alone.


Thus “unit of time” (constant factors) typically ignored 
when analysing the algorithm.



How it scales

So, interested in how a function scales with its input: 
behaviour on large values, up to constant factors


e.g., suppose number of “steps” taken by an algorithm 
to sort a list of n elements varies between 3n and 
3n2+9 (depending on what the list looks like)


If n is doubled, time taken in the worst case could 
become (roughly) 4 times. If n is tripled, it could 
become (roughly, in the worst case) 9 times


An upper bound that grows “like” n2



Upper-bounds: Big O
T(n) has an upper-bound that grows “like” f(n)


T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)


Note: we are defining it only for T & f  
which are eventually non-negative


Note: order of quantifiers! c can’t depend on n 
(that is why c is called a constant factor)


Important:  If T(n)=O(f(n)), f(n) could be much larger than 
T(n) (but only a constant factor smaller than T(n))

Unfortunate notation! 
An alternative used 

sometimes:  
T(n) ∈ O(f(n))



Big-O
e.g. T(x) = 21x2 + 20


T(x) = O(x3)



Big-O

T(x) = O(x2) too, since we allow scaling by constants


But T(x) ≠ O(x). 


∀c>0, ∀k>0, ∃x*≥k  T(x*) > c.x* 

e.g. T(x) = 21x2 + 20


T(x) = O(x3)



Big-O
Used in the analysis of running time of algorithms: 
Worst-case Time(input size) = O(f(input size))


e.g. T(n) = O(n2)


Also used to bound approximation errors


e.g., | log(n!) - log(nn) | = O(n)


A better approximation: | log(n!) - log((n/e)n) | = O(log n)


Even better: | log(n!) - log((n/e)n) - ½⋅log(n) | = O(1)


We may also have T(n) = O(f(n)), where f is a decreasing 
function (especially when bounding errors)


e.g. T(n) = O(1/n)



Big O examples
Suppose T(n) = O(f(n)) and R(n) = O(f(n))


i.e., ∀n≥kT, 0 ≤ T(n) ≤ cT⋅f(n) and ∀n≥kR, 0 ≤ R(n) ≤ cR⋅f(n)


 T(n) + R(n) = O(f(n))


Then, ∀n ≥ max(kT,kR),  0 ≤ T(n)+R(n) ≤ (cR+cT)⋅f(n)


If eventually (∀n≥k), R(n)≥0, then T(n) - R(n) = O(T(n))


∀n ≥ max(k,kR),  T(n)-R(n) ≤ 1⋅T(n)


If T(n) = O(f(n)) and f(n) = O(g(n)), then T(n) = O(g(n))


∀n ≥ max(kT,kf), 0 ≤ T(n) ≤ cT⋅f(n) ≤ cTcf⋅g(n)


e.g., 7n2 + 14n + 2 = O(n2) because 7n2, 14n, 2 are all O(n2)


More generally, if T(n) is upper-bounded by a degree d polynomial 
with a positive coefficient for nd, then T(n) = O(nd) 



Some important functions
T(n) = O(1):  ∃c  s.t. T(n) ≤ c for all sufficiently large n


T(n) = O(log n).  T(n) grows quite slowly, because log n 
grows quite slowly (when n doubles, log n grows by 1)


T(n) = O(n):  T(n) is (at most) linear in n


T(n) = O(n2): T(n) is (at most) quadratic in n


T(n) = O(nd) for some fixed d:  T(n) is (at most) 
polynomial in n


T(n) = O(2d⋅n) for some fixed d:  T(n) is (at most) 
exponential in n. T(n) could grow very quickly. 



Question

Below n denotes the number of nodes in a complete and 
full 3-ary rooted tree and h its height. Which of the 
following is/are true, when considering h as a function of n, 
and n as a function of h? 
  1.  h = O(log3 n)            2.  h = O(log2 n) 
  3.  n = O(3h)                 4.  n = O(2h) 
 
        A.  1 & 3 only 
        B.  2 & 4 only 
        C.  1, 3 & 4 only 
        D.  1, 2 & 3 only 
        E.  1, 2, 3 & 4
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Theta Notation

If we can give a “tight” upper and lower-bound we 
use the Theta notation


T(n) = Θ(f(n))  if  T(n)=O(f(n)) and f(n)=O(T(n))


e.g., 3n2-n = Θ(n2)


If T(n) = Θ(f(n)) and R(n) = Θ(f(n)),  T(n) + R(n) = Θ(f(n))



Question

Which of the following is/are true? 

1.  If f(x) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x)) 

2.  If f(x) = O(g(x)) and h(x) = O(g(x)) then f(x) = O(h(x)) 

3.  If f(x) = Θ(g(x)) and h(x) = Θ(g(x)) then f(x) = Θ(h(x)) 

        A.  1 only 

        B.  1 & 2 only 

        C.  3 only 

        D.  1 & 3 only 

        E.  1, 2 & 3
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≃ and ≪
Asymptotically equal: f(n) ≃ g(n)  if limn→∞ f(n)/g(n) = 1


i.e., eventually, f(n) and g(n) are equal (up to lower order 
terms)


If ∃c>0 s.t.  f(n) ≃ c⋅g(n) then f(n) = Θ(g(n))   
(for f(n) and g(n) which are eventually positive)


Asymptotically much smaller: f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0


If f(n) ≪ g(n) then f(n) = O(g(n)) but f(n) ≠ Θ(g(n)) 
(for f(n) and g(n) which are eventually positive)


Note: Not necessary conditions: Θ and O do not require the 
limit to exist (e.g., f(n) = n for odd n and 2n for even n: then 
f(n) = Θ(n) )



Analysing Algorithms
Analyse correctness and running time (or other resources)


Latter can be quite complicated


Behaviour depends on the particular inputs, but we often 
restrict the analysis to worst-case over all possible inputs 
of the same “size”


Size of a problem is defined in some natural way (e.g., 
number of elements in a list to be sorted, number of 
nodes in a graph to be coloured, etc.)


Generically, could define as number of bits needed to 
write down the input



Loops
If an algorithm is “straight-line” without loops or recursion, 
its running time would be O(1)


Need to analyse how many times a loop is taken


e.g. find max among n numbers in an array L 
 
findmax(L,n) {  

   max = L[1]  

   for i = 2 to n {  

      if (L[i] > max)  

         max = L[i]  

   }  

   return max  

} 

Time taken by 
findmax(L,n)

T(n) = O(n)



Nested Loops
If an outer-loop is executed p times, and each time an 
inner-loop is executed q times, the code inside the inner-
loop is executed p⋅q times in all


More generally, the number of times the inner-loop is taken 
can be different in different executions of the outer-loop


e.g. 
for i = 1 to n {  

   for j = 1 to i {  

      tap-fingers()  

   }  

} 

what all values of (i,j) are 
possible when we get here?

i=1: j=1.  i=2: j=1,2.  i=3: j=1,2,3. ... i=n: j=1,2,..,n.

1 + 2 + 3 + ... + n = n(n+1)/2 = O(n2)



Loops
i = 1  

while i ≤ n {  

   for j = 1 to n {  

      tap-fingers()  

   }  

   i = 2*i  

} 

i = 1  

while i ≤ n {  

   for j = 1 to i {  

      tap-fingers()  

   }  

   i = 2*i  

} 

i=1, 2, 4, ..., 2⎣log n⎦  (j=1,2,..,n always)


O(n log n)

i=1, 2, 4, ..., 2⎣log n⎦  but j=1,…,i


1 + 2 + 4 + ... + 2⎣log n⎦= O(n)


Number of nodes in a complete & full 
binary rooted tree with (about) n 

leaves


