
Design & Analysis of Algorithms

The Big O
Lecture 19

How it scales
In analysing running time (or memory/power consumption) of
an algorithm, we are interested in how it scales as the
problem instance grows in “size”

Running time on small instances of a problem are often not
a serious concern (anyway small)

Also, exact time/number of steps is less interesting

Can differ in different platforms. Not a property of the
algorithm alone.

Thus “unit of time” (constant factors) typically ignored
when analysing the algorithm.

How it scales

So, interested in how a function scales with its input:
behaviour on large values, up to constant factors

e.g., suppose number of “steps” taken by an algorithm
to sort a list of n elements varies between 3n and
3n2+9 (depending on what the list looks like)

If n is doubled, time taken in the worst case could
become (roughly) 4 times. If n is tripled, it could
become (roughly, in the worst case) 9 times

An upper bound that grows “like” n2

Upper-bounds: Big O
T(n) has an upper-bound that grows “like” f(n)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

Note: we are defining it only for T & f
which are eventually non-negative

Note: order of quantifiers! c can’t depend on n
(that is why c is called a constant factor)

Important: If T(n)=O(f(n)), f(n) could be much larger than
T(n) (but only a constant factor smaller than T(n))

Unfortunate notation!
An alternative used

sometimes:
T(n) ∈ O(f(n))

Big-O
e.g. T(x) = 21x2 + 20

T(x) = O(x3)

Big-O

T(x) = O(x2) too, since we allow scaling by constants

But T(x) ≠ O(x).

∀c>0, ∀k>0, ∃x*≥k T(x*) > c.x*

e.g. T(x) = 21x2 + 20

T(x) = O(x3)

Big-O
Used in the analysis of running time of algorithms:
Worst-case Time(input size) = O(f(input size))

e.g. T(n) = O(n2)

Also used to bound approximation errors

e.g., | log(n!) - log(nn) | = O(n)

A better approximation: | log(n!) - log((n/e)n) | = O(log n)

Even better: | log(n!) - log((n/e)n) - ½⋅log(n) | = O(1)

We may also have T(n) = O(f(n)), where f is a decreasing
function (especially when bounding errors)

e.g. T(n) = O(1/n)

Big O examples
Suppose T(n) = O(f(n)) and R(n) = O(f(n))

i.e., ∀n≥kT, 0 ≤ T(n) ≤ cT⋅f(n) and ∀n≥kR, 0 ≤ R(n) ≤ cR⋅f(n)

 T(n) + R(n) = O(f(n))

Then, ∀n ≥ max(kT,kR), 0 ≤ T(n)+R(n) ≤ (cR+cT)⋅f(n)

If eventually (∀n≥k), R(n)≥0, then T(n) - R(n) = O(T(n))

∀n ≥ max(k,kR), T(n)-R(n) ≤ 1⋅T(n)

If T(n) = O(f(n)) and f(n) = O(g(n)), then T(n) = O(g(n))

∀n ≥ max(kT,kf), 0 ≤ T(n) ≤ cT⋅f(n) ≤ cTcf⋅g(n)

e.g., 7n2 + 14n + 2 = O(n2) because 7n2, 14n, 2 are all O(n2)

More generally, if T(n) is upper-bounded by a degree d polynomial
with a positive coefficient for nd, then T(n) = O(nd)

Some important functions
T(n) = O(1): ∃c s.t. T(n) ≤ c for all sufficiently large n

T(n) = O(log n). T(n) grows quite slowly, because log n
grows quite slowly (when n doubles, log n grows by 1)

T(n) = O(n): T(n) is (at most) linear in n

T(n) = O(n2): T(n) is (at most) quadratic in n

T(n) = O(nd) for some fixed d: T(n) is (at most)
polynomial in n

T(n) = O(2d⋅n) for some fixed d: T(n) is (at most)
exponential in n. T(n) could grow very quickly.

Question

Below n denotes the number of nodes in a complete and
full 3-ary rooted tree and h its height. Which of the
following is/are true, when considering h as a function of n,
and n as a function of h?
 1. h = O(log3 n) 2. h = O(log2 n)
 3. n = O(3h) 4. n = O(2h)

 A. 1 & 3 only
 B. 2 & 4 only
 C. 1, 3 & 4 only
 D. 1, 2 & 3 only
 E. 1, 2, 3 & 4

1

STVB

Theta Notation

If we can give a “tight” upper and lower-bound we
use the Theta notation

T(n) = Θ(f(n)) if T(n)=O(f(n)) and f(n)=O(T(n))

e.g., 3n2-n = Θ(n2)

If T(n) = Θ(f(n)) and R(n) = Θ(f(n)), T(n) + R(n) = Θ(f(n))

Question

Which of the following is/are true?

1. If f(x) = O(g(x)) and g(x) = O(h(x)) then f(x) = O(h(x))

2. If f(x) = O(g(x)) and h(x) = O(g(x)) then f(x) = O(h(x))

3. If f(x) = Θ(g(x)) and h(x) = Θ(g(x)) then f(x) = Θ(h(x))

 A. 1 only

 B. 1 & 2 only

 C. 3 only

 D. 1 & 3 only

 E. 1, 2 & 3

2

ESBF

≃ and ≪
Asymptotically equal: f(n) ≃ g(n) if limn→∞ f(n)/g(n) = 1

i.e., eventually, f(n) and g(n) are equal (up to lower order
terms)

If ∃c>0 s.t. f(n) ≃ c⋅g(n) then f(n) = Θ(g(n))
(for f(n) and g(n) which are eventually positive)

Asymptotically much smaller: f(n) ≪ g(n) if limn→∞ f(n)/g(n) = 0

If f(n) ≪ g(n) then f(n) = O(g(n)) but f(n) ≠ Θ(g(n))
(for f(n) and g(n) which are eventually positive)

Note: Not necessary conditions: Θ and O do not require the
limit to exist (e.g., f(n) = n for odd n and 2n for even n: then
f(n) = Θ(n))

Analysing Algorithms
Analyse correctness and running time (or other resources)

Latter can be quite complicated

Behaviour depends on the particular inputs, but we often
restrict the analysis to worst-case over all possible inputs
of the same “size”

Size of a problem is defined in some natural way (e.g.,
number of elements in a list to be sorted, number of
nodes in a graph to be coloured, etc.)

Generically, could define as number of bits needed to
write down the input

Loops
If an algorithm is “straight-line” without loops or recursion,
its running time would be O(1)

Need to analyse how many times a loop is taken

e.g. find max among n numbers in an array L

findmax(L,n) {  

 max = L[1]  

 for i = 2 to n {  

 if (L[i] > max)  

 max = L[i]  

 }  

 return max  

}

Time taken by
findmax(L,n)

T(n) = O(n)

Nested Loops
If an outer-loop is executed p times, and each time an
inner-loop is executed q times, the code inside the inner-
loop is executed p⋅q times in all

More generally, the number of times the inner-loop is taken
can be different in different executions of the outer-loop

e.g.
for i = 1 to n {  

 for j = 1 to i {  

 tap-fingers()  

 }  

}

what all values of (i,j) are
possible when we get here?

i=1: j=1. i=2: j=1,2. i=3: j=1,2,3. ... i=n: j=1,2,..,n.

1 + 2 + 3 + ... + n = n(n+1)/2 = O(n2)

Loops
i = 1  

while i ≤ n {  

 for j = 1 to n {  

 tap-fingers()  

 }  

 i = 2*i  

}

i = 1  

while i ≤ n {  

 for j = 1 to i {  

 tap-fingers()  

 }  

 i = 2*i  

}

i=1, 2, 4, ..., 2⎣log n⎦ (j=1,2,..,n always)

O(n log n)

i=1, 2, 4, ..., 2⎣log n⎦ but j=1,…,i

1 + 2 + 4 + ... + 2⎣log n⎦= O(n)

Number of nodes in a complete & full
binary rooted tree with (about) n

leaves

