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Upper-bounds: Big O

T(n) has an upper-bound that grows “like” f(n)


T(n) = O(f(n))


∃c, k > 0,  ∀n ≥ k,  0 ≤ T(n) ≤ c⋅f(n)


T(n) = Θ(f(n))  if  T(n)=O(f(n)) and f(n)=O(T(n))



Recursion
Given an array L, find max among numbers between positions 
start and end (inclusive) 
 

findmax (L, start, end) {  

   if (start == end)  

      return  L[start]  

   else {  

      mid = ⎣(start+end)/2⎦  
      x = findmax(L,start,mid)  

      y = findmax(L,mid+1,end)  

      if (x>y) return x  

      else return y  

   }  

}

e.g. findmax(L,1,6)

 
 
 
 
 
 
 
 

Correctness by strong induction: 
Induct on the size of the problem. 

i.e., the length of the list, 
n = |end-start+1|


 
How about the running time?
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Recursion structure:  
A full binary rooted tree with n 

leaves

(Not important that the split was 

into almost equal parts)
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Time T(n) taken by  
findmax(L,a,a+n-1)?


 
 
 
 

T(1) = c1


T(n) = T(⎣n/2⎦) + T(⎡n/2⎤) + c2


Recursion tree: c1 on each leaf 
and c2 on each internal node

T(n) = O(number of nodes)


T(n) = O(n)



Question

Time taken by  
find3max(L,a,a+n) is 
 
     A.  Θ(n) 
     B.  Θ(n log n) 
     C.  Θ(n3/2) 
     D.  Θ(n3) 
     E.  None of the above

find3max (L, st, en) {  

   if (st == en)  

      return  L[st]  

   else {  

      mid1 = st +⎣(en-st+1)/3⎦  
      mid2 = st + 2*⎣(en-st+1)/3⎦  
      x = find3max(L,st,mid1)  

      y = find3max(L,mid1+1,mid2)  

      z = find3max(L,mid2+1,en)  

      if (x≥y ∧ x≥z) return x  

      if (y≥x ∧ y≥z) return y  

      if (z≥x ∧ z≥y) return z  

   }  

}
T(n) = Θ(#nodes in a full ternary rooted tree with n leaves) = Θ(n)
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Merge Sort

Sorting by divide-and-conquer


Split the list into two (unless a single element)


Sort each list recursively


Merge the sorted lists into a single sorted list


T(n) = 2T(n/2) + time to merge



Merging Two Sorted Lists
Maintain the invariant that a list K has a prefix of the final merged list. 
X1, X2 have the rest of L1, L2.


Base case: K=empty, X1=L1, X2=L2


Inductively, move the smaller of first(X1) and first(X2) to the end of K

Terminating condition: Both X1 and X2 are empty


Time taken (as a function 
of  n = |L1|+|L2| ) ?


When finished K has 
n elements

Each element gets 
added to K exactly once

Each iteration adds 
exactly one element 
to K (in O(1) time)

T(n) = O(n)

merge (L1, L2 : ascending lists) {  
   K = empty-list; X1 = L1; X2 = L2;  
   while (X1 not empty or X2 not empty) {  
      if (X2 empty)  
         x = pop(X1)  
      else if (X1 empty)  
         x = pop(X2)  
      else if ( first(X1) ≤ first(X2) )  
         x = pop(X1)  
      else  
         x = pop(X2)  
      append(K,x)  
   }  
   return K  
}



Merge Sort
Sorting by divide-and-conquer


Split the list into two (unless a single element)


Sort each list recursively


Merge the sorted lists into a single sorted list


T(n) = 2T(n/2) + time to merge


T(n) = 2T(n/2) + c n

Contribution from each level : O(n)

Depth of recursion = O(log n)

T(n) = O(n log n)



Binary Search
Find where a desired object occurs (if at all)  in a sorted 
list of objects


Objects can be compared with each other (using a total 
ordering)


Simple idea:


Check if desired object = middle one in the list


If not, comparing with the middle one lets you see if it 
could be in the left half or the right half of the list 
(since the list is sorted)


Recursively search in that half


Depth of recursion, for an n element list ≤ ⎡log2 n⎤



Zeroing in on the answer by shrinking 
the range by half each time


Traversing an implicit 
binary tree


Nodes contain the 
mid-elements of the 
range under them


At each node  
compare the  
desired object with 
the object at the node

Binary Search



Binary Search
Alternate use: to approximately find a root of a continuous function 


Needs two points x1, x2, st. f(x1) ≤ 0 and f(x2) ≥ 0


Can maintain this invariant, while shrinking |x1-x2| exponentially


Continuous → this interval will have a root


May miss some 0s if function is not monotonous, but will find 
some other


Contrast with finding a 0 in an array 
of values [f(1),f(2),…,f(n)] (no continuity!)


If array not sorted, we may miss a 0, 
and there may not be another one!


Faster methods exploit value/slope (not just sign)



Binary Search
Example: finding (up to required precision) 
the square root of a number n>1 (using 
only comparison and multiplication)


Initial range: [0,n] (say)


How to compare √n with 
middle element m?


compare n and m2
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A General Solution 
(a.k.a. “Master Theorem”)

T(n) = a T(n/b) + c⋅nd  (and T(1)=1.  
a≥1,b>1 integer, c>0, d≥0 real.)


Say n=bk (so only integers encountered)


#levels = logb n = k


T(n) = O( nd ( 1+ (a/bd) + … + (a/bd)k )


If a = bd, contribution at each level = nd.  T(n) = O(nd⋅log n)


If a < bd: 1+ (a/bd) + (a/bd)2 + … = O(1). T(n) = O(nd)


If a > bd: (a/bd)k[1 + (bd/a) + (bd/a)2 + … ] = O((a/bd)k) = ak/nd 
T(n) = O(ak) = O(2k⋅log a) = O(2log n ⋅ log a/log b) = O(nlogb a)

nd a  
children

(n/b)d (n/b)d (n/b)d (n/b)dtotal at this level 
= a⋅(n/b)d

total at ith level = ai⋅(n/bi)d



Big Number Arithmetic
Usually multiplication/addition are a single operation in a CPU


But not possible when an integer has too many digits to fit 
into a processor’s registers


Can break up the integer into smaller pieces, and compute on 
them


e.g. Addition with carry: each operation (takes 2 numbers 
and a carry bit, and gives a number and a new carry bit) 
works on single digit numbers


To add two n-digit numbers: O(n) operations


As fast as possible: need to at least read all the digits


(Remember: the number N has n=O(log N) digits)



Big Number Arithmetic
Multiplication of two large (binary) numbers


First attempt:  x = x0 + 2 x1, where x1 has one digit less 
Similarly, y = y0 + 2 y1.  So x⋅y = x0y0 + 2 (x0y1 + x1y0) + 4x1y1.


T(n) = T(n-1) + O(n) (and T(1)=O(1)).  So T(n) = O(n2)


Can we do better by dividing the problem differently?


x = x0 + 2n/2 x1  where x0, x1 have n/2 digits each  
(assuming n is a power of 2)


x⋅y = x0y0 + 2n/2(x0y1 + x1y0) + 2nx1y1, where all 4 products 
are of n/2 digit numbers (mult. by a power of 2 and addition 
take O(n) time)


T(n) = 4T(n/2) + Θ(n).  Still T(n)=Θ(n2).


Can we do better?



Big Number Arithmetic
Multiplication of two large numbers


x = x0 + 2n/2 x1  where x0, x1 have n/2 digits each  
(assuming n is a power of 2)


x⋅y = x0y0 + 2n/2 (x0y1 + x1y0) + 2n x1y1 

       = x0y0  + 2n/2[ (x0+x1)(y0+y1) - x0y0 - x1y1 ]  + 2n x1y1


Only 3 multiplications (and reusing products). All of them on 
numbers about n/2 digits each


T(n) = 3T(n/2) + O(n).   T(1) = O(1).


a > bd, where a=3, b=2, d=1 


T(n) = O(n log2 3) = O(n1.585..) Can do better, but more involved.  
Recently: O(n log n), but with a 

very large constant.

Karastuba’s 
Algorithm



Fast Matrix Multiplication
Multiplication of two large square matrices


Suppose  we write A = , B = 


Then, AB = , where Cij = Ai1B1j + Ai2B2j


Cost of multiplying two n×n matrices (assuming unit cost for 
both addition and multiplication)? 


T(n) = 8T(n/2) + cn2


T(n) = nlog 8/log 2 = n3


Same as the naïve algorithm, computing each of the n2 terms 
of C using O(n) operations


Strassen’s algorithm: 7 smaller matrix multiplications instead of 8


T(n) = 7T(n/2) + cn2 ⇒ T(n) = O(nlog2 7) = O(n2.81)
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Can do better, 
but more 
involved.


