Design & Analysis of Algorithms
The Big O

Lecture 20

Upper-bounds: Big O

@ T(n) has an upper-bound that grows “like” f(n)
@ T(n) — O(f(ﬂ))
@3c, k>0, vn2k, 0 <T(n) < c-f(n)

@ T(n) = O(f(n)) if T(n)=O(f(n)) and f(n)=0(T(n))

Recursion

@ Given an array L, find max among numbers between positions

start and end (inclusive)

findmax (L, start, end) {

if (start == end)
return L[start]
else {

mid = | (start+end) /2]
x = findmax(L,start,mid)
y = findmax(L,mid+1,end)

if (x>y) return x
else return y

()

e.g. findmax(L,1,6)

o B

Correctness by strong induction:
Induct on the size of the problem.
i.e., the length of the list,

n = lend-start+l]

How about the running fime?

\ J

Recursion

@ Given an array L, find max among numbers between positions

start and end (inclusive)

findmax (L, start, end) {

if (start == end)
return L[start]
else {

mid = | (start+end) /2]
x = findmax(L,start,mid)
y = findmax(L,mid+1,end)

if (x>y) return x
else return y

s

_

e.g. findmax(L,1,6)

R s e

11 22 B 44l 5:5

Recursion structure:
A full binary rooted tree with n
leaves
(Not important that the split was
into almost equal parts)

J

Recursion

@ Given an array L, find max among numbers between positions

start and end (inclusive)

findmax (L, start, end) {

if (start == end)

return L[start]

else {

mid = | (start+end) /2]

x = findmax(L,start,mid)
y = findmax(L,mid+1,end)
if (x>y) return x

else return y

Time T(n) taken by
findmax(L,a,atn-1)7?

T(l) =C
Tn)=T(Ln/2]1)+T([n/2])+c2
Recursion tree: c; on each leaf

and ¢z on each internal node
T(n) = O(humber of nodes)

T(n) = O(n)

Question

VCVP o find3max (L, st, en) {
@ Time taken by i (s: 43 e:) £
j) & K
find3max(L,a,a+n) is odadi e -

else {
midl = st +| (en-st+1)/3]
A. O(n) mid2 = st + 2*| (en-st+1)/3]
B. ()01|Og n) x = find3max(L,st,midl)
w 3/2 y = find3max(L,midl+1,mid2)
2 an) z = find3max(L,mid2+1,en)
D. G)(n3) if (x2y A x2z) return x
r None of the above if (yzx A y2z) return y
if (z=2x A z2y) return z
}

[T(n) = ©(#nodes in a full ternary rooted tree with n leaves) = O(n)

Merge Sort

@ Sorting by divide-and-conquer
@ Split the list into two (unless a single element)
@ Sort each list recursively

@ Merge the sorted lists into a single sorted list

@ T(n) = 2T(n/2) + time to merge

Merging Two Sorted Lists

@ Maintain the invariant that a list K has a prefix of the final merged list.
X1, X2 have the rest of L;, L..
@ Base case: K=empty, Xi=L;, Xz=L:
@ Inductively, move the smaller of first(X:) and first(Xz) to the end of K
@ Terminating condition: Both X; and Xz are empty

@ Time taken (as a function
of n= |L1|+||_2|) ?

@ When finished K has
n elements

@ Each element gets
added to K exactly once

@ Each iteration adds
exactly one element
to K (in O(1) time)

@ T(n) = O(n)

merge (Li, L2 : ascending lists) {
K = empty-list; X; = Li;; X2 = L3;
while (X1 not empty or X; not empty) {
if (X2 empty)

x = pop(X1)
else if (X1 empty)
x = pop(X2)
else if (first(X:) = first(X:2))
X = pop(X1)
else
x = pop(X2)
append (K, x)

}

return K

Merge Sort

@ Sorting by divide-and-conquer
@ Split the list into two (unless a single element)
@ Sort each list recursively

@ Merge the sorted lists info a single sorted list

@ T(n) = 2T(n/2) + time to merge

@ T(n) = 2T(n/2) + c n
@ Contribution from each level : O(n)
@ Depth of recursion = O(log n)
@ T(n) = O(n log n)

Binary Search

@ Find where a desired object occurs (if at all) in a sorted
list of objects

@ Objects can be compared with each other (using a total
ordering)

@ Simple idea:
@ Check if desired object = middle one in the list

@ If not, comparing with the middle one lets you see if it
could be in the left half or the right half of the list
(since the list is sorted)

@ Recursively search in that half

@ Depth of recursion, for an n element list < [logz n |

Binary Search

@ Zeroing in on the answer by shrinking
the range by half each time I

/ QN)

@ Traversing an implicit I D

binary tree / \
® Nodes contain the B /I B\ H

mid-elements of the
range under them H H H B B H H

NN CRRIRTAIN

® At each node
compare the
desired object with
the object at the node

Binary Search

@ Alternate use: to approximately find a root of a continuous function

@ Needs two points xi, x2, st. f(xi1) £ O and f(x2) > O
@ Can maintain this invariant, while shrinking |x;-x2| exponentially
@ Continuous — this interval will have a root

® May miss some Os if function is not monotonous, but will find
some other

@ Contrast with finding a O in an array
of values [f(1),f(2),...,f(n)] (no continuity!)

@ If array not sorted, we may miss a O, i
and there may not be another one!

@ Faster methods exploit value/slope (not just sign)

Binary Search

@ Example: finding (up to required precision) ¢
the square root of a number n>1 (using

only comparison and multiplication ' ~
y comp P)3/ ~

@ Initial range: [O,n] (say) I U
Sl
/ 4.5

® How to compare /n with B !I AB\ H

middle element m?

@ compare n and m?2 H H I H H H H H
SINININIRIRININ

0 12

G

A General Solution
(a.k.a. "Master Theorem”)

@ T(n) = a T(n/b) + c-nd (and T(1)=1.

a21,b>1 integer, ¢>0, d>0 real.) .

children

A

@ T(n) = O(nd(1+ (a/bd) + ... + (a/bd)k) total at ith level = ai-(n/bi)

@ Say n=bk (so only integers encountered)

total at this level
@ #levels = logp n = K = a-(n/b)d

@ If a = bd, contribution at each level = nd. T(n) = O(nd-log n)

@ If a < bd: 1+ (a/bd) + (a/bd)2 + ... = O(1). T(n) = O(nd)

@ If a > bd: (a/bd)X[1 + (bd/a) + (bd/a)2 + ...] = O((a/bd)x) = ak/nd
T(n) = O(Clk) - O(Zk.log a) = O(Zlog n - log a/log b) “n O(nlogb a)

Big Number Arithmetic

@ Usually multiplication/addition are a single operation in a CPU

@ But not possible when an integer has too many digits to fit
into a processors registers

@ Can break up the infeger info smaller pieces, and compute on
them

@ e.g. Addition with carry: each operation (takes 2 numbers
and a carry bit, and gives a number and a new carry bit)
works on single digit numbers

@ To add two n-digit numbers: O(n) operations
@ As fast as possible: need to at least read all the digits

@ (Remember: the number N has n=O(log N) digits)

Big Number Arithmetic

@ Multiplication of two large (binary) numbers

@ First attempt: X = Xo + 2 X1, where x; has one digit less
Similarly, ¥ = Yo + 2 yi. S0 X'y = XoYo + 2 (Xoy1 + X1Y0) + 4X1Vi.

@ T(n) = T(n-1) + O(n) (and T(1)=0(1)). So T(n) = O(n?)
@ Can we do better by dividing the problem differently?

@ X = Xo + 2"2 x; where Xo, X1 have n/2 digits each
(assuming n is a power of 2)

@ XY = XoYo + 2"2(xoy1 + X1Yo0) + 2'X1y1, Where all 4 products
are of n/2 digit numbers (mult. by a power of 2 and addition
take O(n) time)

@ T(n) = 4T(n/2) + ©O(n). Still T(n)=O(n2).

® Can we do better?

Big Number Arithmetic

@ Multiplication of two large numbers

@ X = Xo + 2"2 x; where Xo, X1 have n/2 digits each
(assuming n is a power of 2)

® X'y = XoYo + 2"2 (Xoy1 + X1Yo) + 2" X1y
= XoYo + 2"2[(Xo+X1)(Yot+Y1) - XoYo - Xiy1] + 2" X1y
Sl Only 3 multiplications (and reusing products). All of them on
numbers about n/2 digits each
@ T(n) = 3T(n/2) + O(n). T(1) = O(1).

@ a > bd, where a=3, b=2, d=1
@ T(n) = O(n legz 3) = O(n!-585-) 24

~

Can do better, but more involved.
Recently: O(n log n), but with a
very large constant.

Fast Matrix Multiplication

@ Multiplication of two large square matrices

A, A B,, B
@ Suppose we write A = [4 12], B = [5 12]
Ay Ay By, By

crec
® Then, AB = [R

C, C22], where Cj; = AiiBij + Ai2B2;

Vs

Can do better,
but more
involved.

~N

@ Cost of multiplying two nxn matrices (assuming wjjit cost for

both addition and multiplication)?
@ T(n) = 8T(n/2) + cn?2

® T(n) = nlog 8/log 2 = n3

@ Same as the nailve algorithm, computing edch of the n2 terms

of C using O(n) operations

@ Strassens algorithm: 7 smaller matrix multipli¢ations instead of 8

o T(n) = 7T(n/2) + cn2 = T(n) = O(ns27) = O(n281)

