
Design & Analysis of Algorithms

The Big O
Lecture 20

Upper-bounds: Big O

T(n) has an upper-bound that grows “like” f(n)

T(n) = O(f(n))

∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c⋅f(n)

T(n) = Θ(f(n)) if T(n)=O(f(n)) and f(n)=O(T(n))

Recursion
Given an array L, find max among numbers between positions
start and end (inclusive)
 

findmax (L, start, end) {  

 if (start == end)  

 return L[start]  

 else {  

 mid = ⎣(start+end)/2⎦  
 x = findmax(L,start,mid)  

 y = findmax(L,mid+1,end)  

 if (x>y) return x  

 else return y  

 }  

}

e.g. findmax(L,1,6)

Correctness by strong induction:
Induct on the size of the problem.

i.e., the length of the list,
n = |end-start+1|

How about the running time?

1:6

1:3 4:6

Recursion
Given an array L, find max among numbers between positions
start and end (inclusive)
 

findmax (L, start, end) {  

 if (start == end)  

 return L[start]  

 else {  

 mid = ⎣(start+end)/2⎦  
 x = findmax(L,start,mid)  

 y = findmax(L,mid+1,end)  

 if (x>y) return x  

 else return y  

 }  

}

e.g. findmax(L,1,6)

Recursion structure:
A full binary rooted tree with n

leaves

(Not important that the split was

into almost equal parts)

1:6

1:3 4:6

4:5 6:61:2 3:3

1:1 2:2 4:4 5:5

Recursion
Given an array L, find max among numbers between positions
start and end (inclusive)
 

findmax (L, start, end) {  

 if (start == end)  

 return L[start]  

 else {  

 mid = ⎣(start+end)/2⎦  
 x = findmax(L,start,mid)  

 y = findmax(L,mid+1,end)  

 if (x>y) return x  

 else return y  

 }  

}

1:6

1:3 4:6

4:51:2

1:1

6:6

2:2

3:3

4:4 5:5

Time T(n) taken by
findmax(L,a,a+n-1)?

T(1) = c1

T(n) = T(⎣n/2⎦) + T(⎡n/2⎤) + c2

Recursion tree: c1 on each leaf
and c2 on each internal node

T(n) = O(number of nodes)

T(n) = O(n)

Question

Time taken by
find3max(L,a,a+n) is

 A. Θ(n)
 B. Θ(n log n)
 C. Θ(n3/2)
 D. Θ(n3)
 E. None of the above

find3max (L, st, en) {  

 if (st == en)  

 return L[st]  

 else {  

 mid1 = st +⎣(en-st+1)/3⎦  
 mid2 = st + 2*⎣(en-st+1)/3⎦  
 x = find3max(L,st,mid1)  

 y = find3max(L,mid1+1,mid2)  

 z = find3max(L,mid2+1,en)  

 if (x≥y ∧ x≥z) return x  

 if (y≥x ∧ y≥z) return y  

 if (z≥x ∧ z≥y) return z  

 }  

}
T(n) = Θ(#nodes in a full ternary rooted tree with n leaves) = Θ(n)

1

VCVP

Merge Sort

Sorting by divide-and-conquer

Split the list into two (unless a single element)

Sort each list recursively

Merge the sorted lists into a single sorted list

T(n) = 2T(n/2) + time to merge

Merging Two Sorted Lists
Maintain the invariant that a list K has a prefix of the final merged list.
X1, X2 have the rest of L1, L2.

Base case: K=empty, X1=L1, X2=L2

Inductively, move the smaller of first(X1) and first(X2) to the end of K

Terminating condition: Both X1 and X2 are empty

Time taken (as a function
of n = |L1|+|L2|) ?

When finished K has
n elements

Each element gets
added to K exactly once

Each iteration adds
exactly one element
to K (in O(1) time)

T(n) = O(n)

merge (L1, L2 : ascending lists) {  
 K = empty-list; X1 = L1; X2 = L2;  
 while (X1 not empty or X2 not empty) {  
 if (X2 empty)  
 x = pop(X1)  
 else if (X1 empty)  
 x = pop(X2)  
 else if (first(X1) ≤ first(X2))  
 x = pop(X1)  
 else  
 x = pop(X2)  
 append(K,x)  
 }  
 return K  
}

Merge Sort
Sorting by divide-and-conquer

Split the list into two (unless a single element)

Sort each list recursively

Merge the sorted lists into a single sorted list

T(n) = 2T(n/2) + time to merge

T(n) = 2T(n/2) + c n

Contribution from each level : O(n)

Depth of recursion = O(log n)

T(n) = O(n log n)

Binary Search
Find where a desired object occurs (if at all) in a sorted
list of objects

Objects can be compared with each other (using a total
ordering)

Simple idea:

Check if desired object = middle one in the list

If not, comparing with the middle one lets you see if it
could be in the left half or the right half of the list
(since the list is sorted)

Recursively search in that half

Depth of recursion, for an n element list ≤ ⎡log2 n⎤

Zeroing in on the answer by shrinking
the range by half each time

Traversing an implicit
binary tree

Nodes contain the
mid-elements of the
range under them

At each node
compare the
desired object with
the object at the node

Binary Search

Binary Search
Alternate use: to approximately find a root of a continuous function

Needs two points x1, x2, st. f(x1) ≤ 0 and f(x2) ≥ 0

Can maintain this invariant, while shrinking |x1-x2| exponentially

Continuous → this interval will have a root

May miss some 0s if function is not monotonous, but will find
some other

Contrast with finding a 0 in an array
of values [f(1),f(2),…,f(n)] (no continuity!)

If array not sorted, we may miss a 0,
and there may not be another one!

Faster methods exploit value/slope (not just sign)

Binary Search
Example: finding (up to required precision)
the square root of a number n>1 (using
only comparison and multiplication)

Initial range: [0,n] (say)

How to compare √n with
middle element m?

compare n and m2

6

0 12

4.5

3.75

3

A General Solution
(a.k.a. “Master Theorem”)

T(n) = a T(n/b) + c⋅nd (and T(1)=1.
a≥1,b>1 integer, c>0, d≥0 real.)

Say n=bk (so only integers encountered)

#levels = logb n = k

T(n) = O(nd (1+ (a/bd) + … + (a/bd)k)

If a = bd, contribution at each level = nd. T(n) = O(nd⋅log n)

If a < bd: 1+ (a/bd) + (a/bd)2 + … = O(1). T(n) = O(nd)

If a > bd: (a/bd)k[1 + (bd/a) + (bd/a)2 + …] = O((a/bd)k) = ak/nd
T(n) = O(ak) = O(2k⋅log a) = O(2log n ⋅ log a/log b) = O(nlogb a)

nd a
children

(n/b)d (n/b)d (n/b)d (n/b)dtotal at this level
= a⋅(n/b)d

total at ith level = ai⋅(n/bi)d

Big Number Arithmetic
Usually multiplication/addition are a single operation in a CPU

But not possible when an integer has too many digits to fit
into a processor’s registers

Can break up the integer into smaller pieces, and compute on
them

e.g. Addition with carry: each operation (takes 2 numbers
and a carry bit, and gives a number and a new carry bit)
works on single digit numbers

To add two n-digit numbers: O(n) operations

As fast as possible: need to at least read all the digits

(Remember: the number N has n=O(log N) digits)

Big Number Arithmetic
Multiplication of two large (binary) numbers

First attempt: x = x0 + 2 x1, where x1 has one digit less
Similarly, y = y0 + 2 y1. So x⋅y = x0y0 + 2 (x0y1 + x1y0) + 4x1y1.

T(n) = T(n-1) + O(n) (and T(1)=O(1)). So T(n) = O(n2)

Can we do better by dividing the problem differently?

x = x0 + 2n/2 x1 where x0, x1 have n/2 digits each
(assuming n is a power of 2)

x⋅y = x0y0 + 2n/2(x0y1 + x1y0) + 2nx1y1, where all 4 products
are of n/2 digit numbers (mult. by a power of 2 and addition
take O(n) time)

T(n) = 4T(n/2) + Θ(n). Still T(n)=Θ(n2).

Can we do better?

Big Number Arithmetic
Multiplication of two large numbers

x = x0 + 2n/2 x1 where x0, x1 have n/2 digits each
(assuming n is a power of 2)

x⋅y = x0y0 + 2n/2 (x0y1 + x1y0) + 2n x1y1

 = x0y0 + 2n/2[(x0+x1)(y0+y1) - x0y0 - x1y1] + 2n x1y1

Only 3 multiplications (and reusing products). All of them on
numbers about n/2 digits each

T(n) = 3T(n/2) + O(n). T(1) = O(1).

a > bd, where a=3, b=2, d=1

T(n) = O(n log2 3) = O(n1.585..) Can do better, but more involved.
Recently: O(n log n), but with a

very large constant.

Karastuba’s
Algorithm

Fast Matrix Multiplication
Multiplication of two large square matrices

Suppose we write A = , B =

Then, AB = , where Cij = Ai1B1j + Ai2B2j

Cost of multiplying two n×n matrices (assuming unit cost for
both addition and multiplication)?

T(n) = 8T(n/2) + cn2

T(n) = nlog 8/log 2 = n3

Same as the naïve algorithm, computing each of the n2 terms
of C using O(n) operations

Strassen’s algorithm: 7 smaller matrix multiplications instead of 8

T(n) = 7T(n/2) + cn2 ⇒ T(n) = O(nlog2 7) = O(n2.81)

[
A

11
A

12

A
21

A
22

] [
B

11
B

12

B
21

B
22

]
[

C
11

C
12

C
21

C
22

]

Can do better,
but more
involved.

