### Design & Analysis of Algorithms The Big O Lecture 20

# Upper-bounds: Big O

T(n) has an upper-bound that grows "like" f(n)
 T(n) = O(f(n))
 ∃c, k > 0, ∀n ≥ k, 0 ≤ T(n) ≤ c ⋅ f(n)
 T(n) = Θ(f(n)) if T(n)=O(f(n)) and f(n)=O(T(n))

#### Recursion

Given an array L, find max among numbers between positions start and end (inclusive)

```
findmax (L, start, end) {
   if (start == end)
      return L[start]
   else {
      mid = [(start+end)/2]
      x = findmax(L,start,mid)
      y = findmax(L,mid+1,end)
      if (x>y) return x
      else return y
```

}

e.g. findmax(L,1,6)



Correctness by strong induction: Induct on the size of the problem. i.e., the length of the list, n = |end-start+1|

How about the running time?

#### Recursion

• Given an array L, find max among numbers between positions start and end (inclusive)

```
findmax (L, start, end) {
   if (start == end)
      return L[start]
   else {
      mid = [(start+end)/2]
      x = findmax(L,start,mid)
      y = findmax(L,mid+1,end)
      if (x>y) return x
      else return y
```

}





**Recursion structure:** A full binary rooted tree with n leaves (Not important that the split was into almost equal parts)

#### Recursion

Given an array L, find max among numbers between positions start and end (inclusive)

```
findmax (L, start, end) {
    if (start == end)
        return L[start]
    else {
        mid = [(start+end)/2]
        x = findmax(L,start,mid)
        y = findmax(L,mid+1,end)
        if (x>y) return x
        else return y
```

}

Time T(n) taken by
findmax(L,a,a+n-1)?

1:6

4:6

4:5

6:6

1:3

3:3

1:2

**1:1 2:2**  $T(1)^{4}=4c_1$  **5:5**  $T(n) = T( \lfloor n/2 \rfloor ) + T( \lceil n/2 \rceil ) + c_2$ 

Recursion tree: c1 on each leaf and c2 on each internal node T(n) = O(number of nodes) T(n) = O(n)



Time taken by find3max(L,a,a+n) is

A. Θ(n)
B. Θ(n log n)
C. Θ(n<sup>3/2</sup>)
D. Θ(n<sup>3</sup>)
E. None of the above

### Question



o find3max (L, st, en) { if (st == en)return L[st] else { mid1 = st + [(en-st+1)/3]mid2 = st + 2\* (en-st+1)/3x = find3max(L,st,mid1)y = find3max(L,mid1+1,mid2)z = find3max(L,mid2+1,en)if  $(x \ge y \land x \ge z)$  return x if  $(y \ge x \land y \ge z)$  return y if  $(z \ge x \land z \ge y)$  return z

 $T(n) = \Theta(\# nodes in a full ternary rooted tree with n leaves) = \Theta(n)$ 

## Merge Sort

Sorting by divide-and-conquer

- Split the list into two (unless a single element)
- Sort each list recursively
- Merge the sorted lists into a single sorted list
- T(n) = 2T(n/2) + time to merge

## Merging Two Sorted Lists

Maintain the invariant that a list K has a prefix of the final merged list.
 X<sub>1</sub>, X<sub>2</sub> have the rest of L<sub>1</sub>, L<sub>2</sub>.

• Inductively, move the smaller of first( $X_1$ ) and first( $X_2$ ) to the end of K

• Terminating condition: Both  $X_1$  and  $X_2$  are empty

Time taken (as a function of n = |L<sub>1</sub>|+|L<sub>2</sub>|)?
When finished K has n elements
Each element gets added to K exactly once
Each iteration adds exactly one element to K (in O(1) time)

o T(n) = O(n)

```
merge (L<sub>1</sub>, L<sub>2</sub> : ascending lists) {
     K = empty-list; X_1 = L_1; X_2 = L_2;
    while (X_1 \text{ not empty or } X_2 \text{ not empty}) {
          if (X<sub>2</sub> empty)
              \mathbf{x} = \mathbf{pop}(\mathbf{X}_1)
         else if (X_1 \text{ empty})
              x = pop(X_2)
         else if ( first(X_1) \leq first(X_2) )
              \mathbf{x} = \operatorname{pop}(\mathbf{X}_1)
          else
              x = pop(X_2)
          append(K, x)
     return K
```

# Merge Sort

Sorting by divide-and-conquer

- Split the list into two (unless a single element)
- Sort each list recursively
- Merge the sorted lists into a single sorted list
- $\odot$  T(n) = 2T(n/2) + time to merge

T(n) = 2T(n/2) + c n
Contribution from each level : O(n)
Depth of recursion = O(log n)
T(n) = O(n log n)

Find where a desired object occurs (if at all) in a sorted list of objects

- Objects can be compared with each other (using a total ordering)
- Simple idea:
  - Ocheck if desired object = middle one in the list
  - If not, comparing with the middle one lets you see if it could be in the left half or the right half of the list (since the list is sorted)
  - Recursively search in that half
  - Depth of recursion, for an n element list  $\leq \lceil \log_2 n \rceil$

Zeroing in on the answer by shrinking the range by half each time

 Traversing an implicit binary tree

Nodes contain the mid-elements of the range under them

At each node
 compare the
 desired object with
 the object at the node

Alternate use: to approximately find a root of a <u>continuous</u> function
 Needs two points x<sub>1</sub>, x<sub>2</sub>, st. f(x<sub>1</sub>) ≤ 0 and f(x<sub>2</sub>) ≥ 0

- Can maintain this invariant, while shrinking  $|x_1-x_2|$  exponentially
- $\odot$  Continuous  $\rightarrow$  this interval will have a root
- May miss some Os if function is not monotonous, but will find some other
- Contrast with finding a 0 in an array of values [f(1),f(2),...,f(n)] (no continuity!)
  - If array not sorted, we may miss a 0, and there may not be another one!



Faster methods exploit value/slope (not just sign)

6

4.5

3.7

 Example: finding (up to required precision) the square root of a number n>1 (using only comparison and multiplication)

0

Initial range: [0,n] (say)

 How to compare √n with middle element m?

A General Solution (a.k.a. "Master Theorem") •  $T(n) = a T(n/b) + c \cdot n^d$  (and T(1)=1. ٥ nd  $a \ge 1, b > 1$  integer,  $c > 0, d \ge 0$  real.) children Say n=b<sup>k</sup> (so only integers encountered) total at this level (n/b)d (n/b)<sup>d</sup> (n/b)<sup>d</sup> (n/b)<sup>d</sup> #levels = log<sub>b</sub> n = k  $= a \cdot (n/b)^d$ • T(n) = O( n<sup>d</sup> ( 1+ (a/b<sup>d</sup>) + ... + (a/b<sup>d</sup>)<sup>k</sup> ) total at i<sup>th</sup> level =  $a^{i} \cdot (n/b^{i})^{d}$ • If  $a = b^d$ , contribution at each level =  $n^d$ . T(n) = O( $n^d \cdot \log n$ )  $\odot$  If a < bd: 1+ (a/bd) + (a/bd)<sup>2</sup> + ... = O(1). T(n) = O(nd)  $If a > b^{d}: (a/b^{d})^{k}[1 + (b^{d}/a) + (b^{d}/a)^{2} + ...] = O((a/b^{d})^{k}) = a^{k}/n^{d}$  $T(n) = O(a^k) = O(2^{k \cdot \log a}) = O(2^{\log n \cdot \log a/\log b}) = O(n^{\log_b a})$ 

## Big Number Arithmetic

Sually multiplication/addition are a single operation in a CPU

- But not possible when an integer has too many digits to fit into a processor's registers
- Can break up the integer into smaller pieces, and compute on them
  - e.g. Addition with carry: each operation (takes 2 numbers and a carry bit, and gives a number and a new carry bit) works on single digit numbers
  - To add two n-digit numbers: O(n) operations
    - As fast as possible: need to at least read all the digits
    - (Remember: the number N has n=O(log N) digits)

## Big Number Arithmetic

Multiplication of two large (binary) numbers

- First attempt:  $x = x_0 + 2 x_1$ , where  $x_1$  has one digit less Similarly,  $y = y_0 + 2 y_1$ . So  $x \cdot y = x_0y_0 + 2 (x_0y_1 + x_1y_0) + 4x_1y_1$ .
- T(n) = T(n-1) + O(n) (and T(1)=O(1)). So  $T(n) = O(n^2)$

So Can we do better by dividing the problem differently?

- $x = x_0 + 2^{n/2} x_1$  where  $x_0, x_1$  have n/2 digits each (assuming n is a power of 2)
- x · y = x<sub>0</sub>y<sub>0</sub> + 2<sup>n/2</sup>(x<sub>0</sub>y<sub>1</sub> + x<sub>1</sub>y<sub>0</sub>) + 2<sup>n</sup>x<sub>1</sub>y<sub>1</sub>, where all 4 products are of n/2 digit numbers (mult. by a power of 2 and addition take O(n) time)
- T(n) = 4T(n/2) +  $\Theta(n)$ . Still T(n)= $\Theta(n^2)$ .
- O Can we do better?

# Big Number Arithmetic

Multiplication of two large numbers

 $x = x_0 + 2^{n/2} x_1$  where  $x_0$ ,  $x_1$  have n/2 digits each (assuming n is a power of 2)

Karastuba's

 $x \cdot y = x_0 y_0 + 2^{n/2} (x_0 y_1 + x_1 y_0) + 2^n x_1 y_1$  $= x_0y_0 + 2^{n/2}[(x_0+x_1)(y_0+y_1) - x_0y_0 - x_1y_1] + 2^n x_1y_1$ Algorithm Only 3 multiplications (and reusing products). All of them on numbers about n/2 digits each T(n) = 3T(n/2) + O(n). T(1) = O(1).  $a > b^d$ , where a=3, b=2, d=1  $T(n) = O(n^{\log_2 3}) = O(n^{1.585..}) <$ Can do better, but more involved. Recently: O(n log n), but with a

very large constant.

## Fast Matrix Multiplication

Multiplication of two large square matrices

Suppose we write  $A = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$ ,  $B = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix}$ Then,  $AB = \begin{bmatrix} C_{11} & C_{12} \\ C_{21} & C_{22} \end{bmatrix}$ , where  $C_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j}$ 

Can do better, but more involved.

Cost of multiplying two n×n matrices (assuming u/it cost for both addition and multiplication)?

**a** 
$$T(n) = n^{\log 8/\log 2} = n^3$$

Same as the naïve algorithm, computing each of the n<sup>2</sup> terms of C using O(n) operations

Strassen's algorithm: 7 smaller matrix multiplications instead of 8
T(n) = 7T(n/2) + cn<sup>2</sup>  $\Rightarrow$  T(n) = O(n<sup>log<sub>2</sub> 7</sup>) = O(n<sup>2.81</sup>)