Countability and the Uncountable

Lecture 21
How do you make precise the intuition that there are more real numbers than integers? Both are infinite...

When do we say two infinite sets A & B have the same size?

Definition: \(|A| = |B|\) if there is a bijection from A to B.

\(|\mathbb{Z}| = |2\mathbb{Z}|.\) (\(2\mathbb{Z}\) = evens). \(f: \mathbb{Z} \rightarrow 2\mathbb{Z}\) defined as \(f(x) = 2x\) is a bijection.

\(|\mathbb{Z}| = |\mathbb{N}|.\) bijection \(g: \mathbb{Z} \rightarrow \mathbb{N}: g(x) = 2x\) for \(x \geq 0\), \(g(x) = 2|x|-1\) for \(x < 0\).

\(|\mathbb{N}| = |2\mathbb{Z}|.\) \(h: \mathbb{N} \rightarrow 2\mathbb{Z}\) defined as \(h = f \circ g^{-1}\)
A set A is **countably infinite** if $|A|=|\mathbb{N}|$

i.e., there is a bijection $f: \mathbb{N} \rightarrow A$

Note: $|A|=|\mathbb{N}|$ iff $|A|=|\mathbb{Z}|$, $|A|=|2\mathbb{Z}|$ etc.

A set is **countable** if it is **finite** or **countably infinite**

Intuition: all “discrete” sets are countable
How do you count infinity?

We defined: A is **countably infinite** if \(|A| = |\mathbb{N}| \), i.e., if there is a bijection between A and \(\mathbb{N} \).

\(\mathbb{N}^2 \) is countable. Bijection by ordering points in \(\mathbb{N}^2 \) on a “curve”

\((0,0), (1,0), (0,1), (2,0), (1,1), (0,2), \ldots\) (i.e., \(f(0)=(0,0), f(1)=(1,0), f(2)=(0,1) \) \ldots)

Note: \((0,0), (1,0), (2,0), (3,0) \ldots\) will not give a bijection

\(\mathbb{Z}^2 \) is countable. \(f: \mathbb{Z}^2 \rightarrow \mathbb{N} \) defined as \(f(a,b) = h (g(a),g(b)) \), where \(g: \mathbb{Z} \rightarrow \mathbb{N} \) and \(h: \mathbb{N}^2 \rightarrow \mathbb{N} \) are bijections, is a bijection

More generally, if A and B are countable, the A×B is countable (extended to any finite number of sets by induction)
But Things Get Messy...

Is \(|\mathbb{Q}|\) countable?

We saw bijection between \(\mathbb{Z}^2\) and \(\mathbb{N}\). Enough to find a bijection between \(\mathbb{Q}\) and \(\mathbb{Z}^2\).

Not immediately clear: not all pairs \((a,b)\) correspond to a distinct rational number \(a/b\)

- \(a\) and \(b\) can have a common divisor; also, trouble with \(b=0\)

But easier to construct a one-to-one function \(f: \mathbb{Q} \rightarrow \mathbb{Z}^2\) as \(f(x) = (p,q)\) where \(x=p/q\) is the “canonical representation” of \(x\) (i.e., \(\text{gcd}(p,q)=1\) and \(q > 0\)).

Hence one-to-one function \(g \circ f: \mathbb{Q} \rightarrow \mathbb{N}\), where \(g: \mathbb{Z}^2 \rightarrow \mathbb{N}\) is a bijection

Also can construct a one-to-one function \(h: \mathbb{N} \rightarrow \mathbb{Q}\) as \(h(a)=a\)
But Things Get Messy...

Is \(|\mathbb{Q}|\) countable?

One-to-one functions \(f_1: \mathbb{Q} \rightarrow \mathbb{N}\) and \(f_2: \mathbb{N} \rightarrow \mathbb{Q}\)

Intuitively, if a one-to-one function from A to B, \(|A| \leq |B|\)

True for finite sets

Definition: \(|A| \leq |B|\) if there is a one-to-one function from A to B

So \(|\mathbb{Q}| \leq |\mathbb{N}|\) and \(|\mathbb{N}| \leq |\mathbb{Q}|\)

Want to show \(|\mathbb{Q}| = |\mathbb{N}|\) (i.e., a bijection between \(\mathbb{Q}\) and \(\mathbb{N}\))
Bijection from Two Injections

Theorem [CSB]: There is a bijection from A to B if and only if there is a one-to-one function from A to B, and a one-to-one function from B to A.

Restated: $|A|=|B| \iff |A| \leq |B|$ and $|B| \leq |A|$

Proof idea: Let $f:A \rightarrow B$ and $g:B \rightarrow A$ (one-to-one).

Consider infinite chains obtained by following the arrows.

- **One-to-one** \Rightarrow no two chains collide. Each node in a unique chain.

- Chain could start from an A node, start from a B node or has no starting node (doubly infinite or cyclic). Say, types A,B and C.

- Let $h:A \rightarrow B$ s.t. $h(a)=f(a)$ if a's chain type A; else $h(a)=b$ s.t. $g(b)=a$.

Trivial for finite sets
Bijection from Two Injections

Since $|\mathbb{Q}| \leq |\mathbb{N}|$ and $|\mathbb{N}| \leq |\mathbb{Q}|$, by CBS-theorem $|\mathbb{Q}| = |\mathbb{N}|$

- \mathbb{Q} is countable

The set S of all finite-length strings made of [A–Z] is countably infinite

- Interpret A to Z as the non-zero digits in base 27. Given $s \in S$, interpret it as a number. This mapping $(S \rightarrow \mathbb{N})$ is one-to-one

- Map an integer n to A^n (string with n As). This is one-to-one.
Summary

Definition: \(|A| = |B|\) if there is a bijection from \(A\) to \(B\)

Definition: \(|A| \leq |B|\) if there is a one-to-one function from \(A\) to \(B\)

Theorem [CBS]: \(|A| = |B| \iff |A| \leq |B|\) and \(|B| \leq |A|\)

\(A\) is countably infinite if \(|A| = |\mathbb{N}|\)

- e.g., \(|\mathbb{Z}| = |\mathbb{N}|\), \(|2\mathbb{Z}| = |\mathbb{N}|\), \(|\mathbb{N}^2| = |\mathbb{N}|\) etc. (saw explicit bijections)
- e.g., \(|\mathbb{Q}| = |\mathbb{N}|\) (saw one-to-one functions in both directions)

\(A\) is uncountable if \(A\) is infinite but not countably infinite

- Equivalently, if no function \(f : A \rightarrow \mathbb{N}\) is one-to-one
- Equivalently, if no function \(f : \mathbb{N} \rightarrow A\) is onto

Equivalently: there is an onto function from \(B\) to \(A\) (relying on the “Axiom of Choice”)

Uncountable Sets

Claim: \(\mathbb{R} \) is uncountable

Related claims:

- Set \(T \) of all infinitely long binary strings is uncountable

 Contrast with set of all finitely long binary strings, which is a countably infinite set

- The power-set of \(\mathbb{N} \), \(P(\mathbb{N}) \) is uncountable

 There is a bijection \(f: T \rightarrow P(\mathbb{N}) \) defined as \(f(s) = \{ i \mid s_i = 1 \} \)

How do we show something is not countable?!

Cantor’s “diagonal slash”

\[e.g., \text{set of even numbers corresponds to the string } 101010... \]
Cantor’s Diagonal Slash

To prove \(P(\mathbb{N}) \) is uncountable

Take any function \(f: \mathbb{N} \rightarrow P(\mathbb{N}) \)

Make a binary table with \(T_{ij} = 1 \)
iff \(j \in f(i) \)

Consider the set \(X \subseteq \mathbb{N} \)
corresponding to the “flipped diagonal”

\[
X = \{ j \mid T_{jj} = 0 \} = \{ j \mid j \notin f(j) \}
\]

\(X \) doesn’t appear as a row in this table \((\text{why?})\)

So \(f \) not onto
Question

Which of the following are countably infinite?
1. Set of all prime numbers
2. Set of all bit strings of length 32
3. Set of all bit strings of finite length
4. Set of all infinitely long bit strings

A. 1, 2, 3 and 4
B. 1, 2 and 3 only
C. 1, 3 and 4 only
D. 1 and 3 only
E. None of the above choices
Cantor’s Diagonal Slash

Take any function \(f: \mathbb{N} \rightarrow \mathcal{P}(\mathbb{N}) \)

Make a binary table with \(T_{ij} = 1 \) iff \(j \in f(i) \)

Consider the set \(X \subseteq \mathbb{N} \)
corresponding to the “flipped diagonal”

\[
X = \{ j \mid T_{jj} = 0 \} = \{ j \mid j \notin f(j) \}
\]

\(X \) doesn’t appear as a row in this table (why?)

So \(f \) not onto

Generalizes:

No onto function \(f: A \rightarrow \mathcal{P}(A) \)

for any set \(A \)

May not have a table enumerating \(f \) (if \(A \) is uncountable)

Let \(X = \{ j \in A \mid j \notin f(j) \} \)

Claim: \(\nexists \ i \in A \) s.t. \(X = f(i) \)

Suppose not: i.e., \(\exists i, X = f(i) \)

\(i \in X \leftrightarrow i \in f(i) \leftrightarrow i \notin X \)

Contradiction!
Pick the correct statement. A is a non-empty set.

A. There is no one-to-one function from A to $\mathcal{P}(A)$
B. There is no onto function from $\mathcal{P}(A)$ to A
C. There is no one-to-one function from $\mathcal{P}(A)$ to A
D. There is a bijection between A and $\mathcal{P}(A)$ iff A is finite
E. None of the above
Paradoxes and Relatives

Russell’s Paradox: In the universe of all sets, let
\(S = \{ s \mid s \notin s \} \). Then \(S \in S \leftrightarrow S \notin S \)!

“Naïve Set Theory” is inconsistent. Consistent theories developed which do not let one define such sets.

In a library of catalogs, can you have a catalog of all catalogs in the library that don’t list themselves? (answer: No!)

Liar’s paradox: “This statement is false.” (The statement is true iff it is false! Requires a logic with “undefined” as truth value.)

Gödel numbered statements in a theory and showed that in any “rich” theory there must be a statement with number \(g \) which says “statement with Gödel number \(g \) is not provable”

This statement must be true if theory consistent (else a false statement is provable). Then the theory would be incomplete.
We saw that T, the set of infinite binary strings is uncountable.

Enough to show a one-to-one mapping from T to \mathbb{R} (why?)

Idea: treat a binary string $s_1s_2s_3...$ as the real number $0.s_1s_2s_3...$ in decimal.

This is a one-to-one mapping: a finite difference between the real numbers that two different strings map to.

Note: if used binary representation instead of decimal representation, we'll have strings 011111.. and 10000... map to the same real number (though that can be handled).

On the other hand $|\mathbb{R}^2| = |\mathbb{R}|$.

Because $|T^2|=|T|$ (bijection by interleaving), and we saw $|\mathbb{R}|=|T|$ (and hence $|\mathbb{R}^2|=|T^2|$ too).