
(Finite) State Machines
Lecture 22



Several Models of Computation

Automata/Machines, Algebras/Calculi, Grammars, …


A few examples we shall see:


(Finite) State Automata


(Context Free) Grammars


Circuits


You already saw (implicitly): “Random Access Machine”


Today: States (and automata)



State
Consider a (discrete) system which takes a stream of inputs and 
produces a stream of outputs (a “transducer”) 
 
 
 

The system’s output at any moment depends not only on the 
“current” input but also on what the system “remembers” about 
the past


State of the system: what is in the system’s memory


The number of possible states could be finite or infinite (for e.g. 
if the system remembers the sequence of inputs seen so far, or 
even just the number of inputs so far) 

a b c d ... 1 2 3 4 ...



A graph with nodes as the states and arcs from a state to 
another if the system can make that transition in one step 


e.g. A system in which the inputs are pairs of binary digits (Least 
Significant Bit first) and the outputs are the digits of their sum 
 
 
 
 

What should the system remember?


The “carry”: a single bit


State diagram has two nodes

State Diagram

[ ]0 1[ ]1 1 [ ]0 00  0  10 0 1 + 
0 1 1 .

-------

1 0 0 .



Initially carry is 0

If carry is 0, and input is [0,0], then output is 0


And carry remains 0

If carry is 0, and input is [1,1], then output is 0, but new carry is 1 
... 

State Diagram

[ ]0 1[ ]1 1 [ ]0 00  0  1
carry input output new carry

0 [0,0] 0 0

0 [0,1] 1 0

0 [1,0] 1 0

0 [1,1] 0 1

1 [0,0] 1 0

1 [0,1] 0 1

1 [1,0] 0 1

1 [1,1] 1 1

carry

0 1

[1,0]/1

[0,1]/1

[0,0]/0

[0,1]/0

[1,0]/0

[1,1]/1

[1,1]/0

[0,0]/1



Transition function: maps (state,input) pairs to (state,output) pairs

δdeterministic: S × ∑in → S × ∑out (S: state space, ∑: “alphabet”)

Deterministic: given a state and an input, the system’s behavior 
on next input is completely determined 

State Diagram

[ ]0 1[ ]1 1 [ ]0 00  0  1
carry input output new carry

0 [0,0] 0 0

0 [0,1] 1 0

0 [1,0] 1 0

0 [1,1] 0 1

1 [0,0] 1 0

1 [0,1] 0 1

1 [1,0] 0 1

1 [1,1] 1 1

carry

0 1

[1,0]/1

[0,1]/1

[0,0]/0

[0,1]/0

[1,0]/0

[1,1]/1

[1,1]/0

[0,0]/1



Binary addition for 3 bit numbers


In the previous example, the answer is complete only if carry 
is 0 (can enforce by feeding [0,0] as a last input)


Here, accepts only up to 3 bits for each number, and produces 
a 4 bit output


State space?


Need to remember carry, and number of inputs seen so far

Another Example

0,0 0,1

1,1

0,2

1,2

dead

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

[0,0]/0

[0,1]/0
[0,0]/1

0,0
]/1

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

[0,0]/0

[0,1]/0
[0,0]/1

0,0
]/1

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

*/𝟄 

0,3

1,3
𝟄/1

𝟄/0



Question

On giving which of the following strings as input does 
this transducer give a different string as output 
 
 
 
 
   A.  100 
   B.  0100 
   C.  0011010 
   D.  1110110 
   E.  1100011

(0*11)* 10 0* 1 (0|1)*

0/0

1/1

1/1

0/0

0/0

1/0

1

RFYQ



Acceptors

The machines we saw are deterministic transducers


Converts an input stream to an output stream


Acceptors don’t produce an output stream


At the end of input, either “accepts” or “rejects” the 
input. Indicated by the state it is in at that point.


Accepting states are called final states


Transition function:  δdet-acceptor : S × ∑ → S



An Example

Input: a number given as binary digits, MSB first. 
Accept iff the number is even (or empty)


Just remember the last digit seen


What if input is given LSB first?


Remember the first digit seen

0 1

1

0

0/1

0/1

0

1



Question

Which of the following strings  
does this acceptor accept? 
 
 
   A.  0101 
   B.  1001 
   C.  1010 
   D.  1100 
   E.  None of the above

0

1

1

1

0

0

0

1

2

LQXQ



Question

Which of the following strings is not accepted by this 
acceptor: 
 
 
 
   A.  𝟄  (empty string) 
   B.  101 
   C.  001000110 
   D.  1011001 
   E.  10000001

Odd number of 1s

0 0

1

1

3

BPKQ



An Example

Input: a number given as binary digits, MSB first. 
Accept iff the number is divisible by d (or empty)


Just remember remember x (mod d), 
where x is the number seen so far. 


Next number x’ is 2x or 2x+1 depending  
on the current input bit. 


x’ (mod d) is determined by x (mod d)

0

1

1

1

0

0

0

1
0 1

2 3



A Variant
Input: a number given as binary digits, LSB first. 
Accept iff the number is divisible by d (or empty)


To remember x (mod d), where x is the number seen so 
far. 


Next number x’ = ?


x’ = x + b.2n, where n bits seen so far, and b ∈ {0,1} is 
the next bit


But we can’t “remember” n.


Enough to remember 2n mod d (along with x mod d)



Counting Number of 
States: An Example

Game of Nim:  
- 2 piles of matchsticks, with T matchsticks each.  
- Each round a player removes one or more matchsticks from    
one pile. 
- Alice makes the first move.


What are the states?


(|pile1|, |pile2|, next-player)


Number of such states? 2(T+1)2


Number of reachable states? 2(T+1)2 - 4

(T,T,Bob)   
(T,T-1,Alice) 
(T-1,T,Alice) 
(T-1,T-1,Bob) 

are unreachable



Finite-State Machines
Many sets of strings have finite-state acceptors


e.g., numbers divisible by d, LSB first, or MSB first; strings 
matching a “pattern” like 0*10*10* (strings with exactly two 1s)


Can run on arbitrarily long inputs without needing more memory


Many interesting sets of strings do not have finite-state acceptors


e.g., strings with equal number of 0s and 1s, palindromes, 
strings representing prime numbers, ...


How do we know they don’t have finite-state acceptors?


If only finite memory, can come up with two input sequences 
which result in same state, but one to be accepted and one 
to be rejected


Later (in CS 310)



Non-determinism

At a state, on an input, the system could make zero, one or 
more different transitions


δnondet-acceptor : S × ∑ → P(S)


δ(s,a): At a state s, on input a, what is the set of all the 
states to which the system can transition


System’s behavior not necessarily fixed by its state and input


Sometimes probabilistic machine: Non-deterministic machine 
     + probabilities associated with the multiple transitions 



An Example

Accept only strings which end in 00


Example string: 0100


Note: δ(B,1) = ∅ (no where to go!)

At a state, on an input, the system could make zero, one or 
more different transitions


δnondet-acceptor : S × ∑ → P(S)

0 1 00
0

0

0
1

A B

C



Representing a Finite-State Machine

If your program uses only a constant amount of memory 
(irrespective of how large the input (stream) is) then it is a finite 
state machine


But often useful to explicitly design a finite state machine 
(identifying all its states/transitions), and then implement it


To represent the transition function of a deterministic 
acceptor, a look-up table mapping (state,input) pair to a state


But if sparse - i.e., for many states, many inputs lead to a 
“crash state” (which is left implicit) - it is more space-efficient 
to simply list valid (state, input, next state) tuples


This would slow down look-up


An appropriate data structure (sometimes a “hash table”) 
can give  (almost) the best of both worlds

Or, in the 
case of non-
detereministic 
machines, ∅ 



Infinite-State Systems
If we consider an infinite set of possible inputs (all possible strings), 
many systems are best modeled as infinite-state systems


e.g., a counter that keeps track of the number of inputs so far


In practice, your machine has only a finite memory, but it is not 
very useful to model it as a finite-state machine if the number 
of states is huge


e.g., if a program stores 100 bits of input in memory, already 
the number of possible states it can have is more than the 
age of the universe in pico seconds


In general infeasible to explicitly describe the state diagram


An infinite-state system can still be a “finite-control” system


i.e., system’s behaviour defined by a fixed “program”


This is what we consider computation



Infinite-State Systems
Even a few simple rules can lead to complex behavioural patterns 
(or rather, “non-patterns”)


Popular examples


Game of Life


Cellular automata


Aperiodic tilings/Quasicrystals


A simple model for computation


Turing Machines


Later...


