
(Finite) State Machines
Lecture 22

Several Models of Computation

Automata/Machines, Algebras/Calculi, Grammars, …

A few examples we shall see:

(Finite) State Automata

(Context Free) Grammars

Circuits

You already saw (implicitly): “Random Access Machine”

Today: States (and automata)

State
Consider a (discrete) system which takes a stream of inputs and
produces a stream of outputs (a “transducer”)

The system’s output at any moment depends not only on the
“current” input but also on what the system “remembers” about
the past

State of the system: what is in the system’s memory

The number of possible states could be finite or infinite (for e.g.
if the system remembers the sequence of inputs seen so far, or
even just the number of inputs so far)

a b c d ... 1 2 3 4 ...

A graph with nodes as the states and arcs from a state to
another if the system can make that transition in one step

e.g. A system in which the inputs are pairs of binary digits (Least
Significant Bit first) and the outputs are the digits of their sum

What should the system remember?

The “carry”: a single bit

State diagram has two nodes

State Diagram

[]0 1[]1 1 []0 00 0 10 0 1 +
0 1 1 .

1 0 0 .

Initially carry is 0

If carry is 0, and input is [0,0], then output is 0

And carry remains 0

If carry is 0, and input is [1,1], then output is 0, but new carry is 1
...

State Diagram

[]0 1[]1 1 []0 00 0 1
carry input output new carry

0 [0,0] 0 0

0 [0,1] 1 0

0 [1,0] 1 0

0 [1,1] 0 1

1 [0,0] 1 0

1 [0,1] 0 1

1 [1,0] 0 1

1 [1,1] 1 1

carry

0 1

[1,0]/1

[0,1]/1

[0,0]/0

[0,1]/0

[1,0]/0

[1,1]/1

[1,1]/0

[0,0]/1

Transition function: maps (state,input) pairs to (state,output) pairs

δdeterministic: S × ∑in → S × ∑out (S: state space, ∑: “alphabet”)

Deterministic: given a state and an input, the system’s behavior
on next input is completely determined

State Diagram

[]0 1[]1 1 []0 00 0 1
carry input output new carry

0 [0,0] 0 0

0 [0,1] 1 0

0 [1,0] 1 0

0 [1,1] 0 1

1 [0,0] 1 0

1 [0,1] 0 1

1 [1,0] 0 1

1 [1,1] 1 1

carry

0 1

[1,0]/1

[0,1]/1

[0,0]/0

[0,1]/0

[1,0]/0

[1,1]/1

[1,1]/0

[0,0]/1

Binary addition for 3 bit numbers

In the previous example, the answer is complete only if carry
is 0 (can enforce by feeding [0,0] as a last input)

Here, accepts only up to 3 bits for each number, and produces
a 4 bit output

State space?

Need to remember carry, and number of inputs seen so far

Another Example

0,0 0,1

1,1

0,2

1,2

dead

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

[0,0]/0

[0,1]/0
[0,0]/1

0,0
]/1

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

[0,0]/0

[0,1]/0
[0,0]/1

0,0
]/1

[0,0]/0

[0,1]/1
[1,0]/1
[1,1]/0

*/𝟄

0,3

1,3
𝟄/1

𝟄/0

Question

On giving which of the following strings as input does
this transducer give a different string as output

 A. 100
 B. 0100
 C. 0011010
 D. 1110110
 E. 1100011

(0*11)* 10 0* 1 (0|1)*

0/0

1/1

1/1

0/0

0/0

1/0

1

RFYQ

Acceptors

The machines we saw are deterministic transducers

Converts an input stream to an output stream

Acceptors don’t produce an output stream

At the end of input, either “accepts” or “rejects” the
input. Indicated by the state it is in at that point.

Accepting states are called final states

Transition function: δdet-acceptor : S × ∑ → S

An Example

Input: a number given as binary digits, MSB first.
Accept iff the number is even (or empty)

Just remember the last digit seen

What if input is given LSB first?

Remember the first digit seen

0 1

1

0

0/1

0/1

0

1

Question

Which of the following strings
does this acceptor accept?

 A. 0101
 B. 1001
 C. 1010
 D. 1100
 E. None of the above

0

1

1

1

0

0

0

1

2

LQXQ

Question

Which of the following strings is not accepted by this
acceptor:

 A. 𝟄 (empty string)
 B. 101
 C. 001000110
 D. 1011001
 E. 10000001

Odd number of 1s

0 0

1

1

3

BPKQ

An Example

Input: a number given as binary digits, MSB first.
Accept iff the number is divisible by d (or empty)

Just remember remember x (mod d),
where x is the number seen so far.

Next number x’ is 2x or 2x+1 depending
on the current input bit.

x’ (mod d) is determined by x (mod d)

0

1

1

1

0

0

0

1
0 1

2 3

A Variant
Input: a number given as binary digits, LSB first.
Accept iff the number is divisible by d (or empty)

To remember x (mod d), where x is the number seen so
far.

Next number x’ = ?

x’ = x + b.2n, where n bits seen so far, and b ∈ {0,1} is
the next bit

But we can’t “remember” n.

Enough to remember 2n mod d (along with x mod d)

Counting Number of
States: An Example

Game of Nim:
- 2 piles of matchsticks, with T matchsticks each.
- Each round a player removes one or more matchsticks from
one pile.
- Alice makes the first move.

What are the states?

(|pile1|, |pile2|, next-player)

Number of such states? 2(T+1)2

Number of reachable states? 2(T+1)2 - 4

(T,T,Bob)
(T,T-1,Alice)
(T-1,T,Alice)
(T-1,T-1,Bob)

are unreachable

Finite-State Machines
Many sets of strings have finite-state acceptors

e.g., numbers divisible by d, LSB first, or MSB first; strings
matching a “pattern” like 0*10*10* (strings with exactly two 1s)

Can run on arbitrarily long inputs without needing more memory

Many interesting sets of strings do not have finite-state acceptors

e.g., strings with equal number of 0s and 1s, palindromes,
strings representing prime numbers, ...

How do we know they don’t have finite-state acceptors?

If only finite memory, can come up with two input sequences
which result in same state, but one to be accepted and one
to be rejected

Later (in CS 310)

Non-determinism

At a state, on an input, the system could make zero, one or
more different transitions

δnondet-acceptor : S × ∑ → P(S)

δ(s,a): At a state s, on input a, what is the set of all the
states to which the system can transition

System’s behavior not necessarily fixed by its state and input

Sometimes probabilistic machine: Non-deterministic machine
 + probabilities associated with the multiple transitions

An Example

Accept only strings which end in 00

Example string: 0100

Note: δ(B,1) = ∅ (no where to go!)

At a state, on an input, the system could make zero, one or
more different transitions

δnondet-acceptor : S × ∑ → P(S)

0 1 00
0

0

0
1

A B

C

Representing a Finite-State Machine

If your program uses only a constant amount of memory
(irrespective of how large the input (stream) is) then it is a finite
state machine

But often useful to explicitly design a finite state machine
(identifying all its states/transitions), and then implement it

To represent the transition function of a deterministic
acceptor, a look-up table mapping (state,input) pair to a state

But if sparse - i.e., for many states, many inputs lead to a
“crash state” (which is left implicit) - it is more space-efficient
to simply list valid (state, input, next state) tuples

This would slow down look-up

An appropriate data structure (sometimes a “hash table”)
can give (almost) the best of both worlds

Or, in the
case of non-
detereministic
machines, ∅

Infinite-State Systems
If we consider an infinite set of possible inputs (all possible strings),
many systems are best modeled as infinite-state systems

e.g., a counter that keeps track of the number of inputs so far

In practice, your machine has only a finite memory, but it is not
very useful to model it as a finite-state machine if the number
of states is huge

e.g., if a program stores 100 bits of input in memory, already
the number of possible states it can have is more than the
age of the universe in pico seconds

In general infeasible to explicitly describe the state diagram

An infinite-state system can still be a “finite-control” system

i.e., system’s behaviour defined by a fixed “program”

This is what we consider computation

Infinite-State Systems
Even a few simple rules can lead to complex behavioural patterns
(or rather, “non-patterns”)

Popular examples

Game of Life

Cellular automata

Aperiodic tilings/Quasicrystals

A simple model for computation

Turing Machines

Later...

