
Computability and

Computational Complexity

Lecture 23

P & NP

Computation Problems
A discrete computational task can be modelled as that task of
evaluating a function f : N → N, or f : {0,1}* → {0,1}*

Decision problems: output is a single bit (“yes” or “no”)

f : {0,1}* → {0,1}. Lf ≜ { x | f(x) = 1 } is called the language
associated with the decision problem f

More complex notions exist

Interactive (or reactive) computation: inputs can be fed after
outputs are observed

Multiparty computation: inputs and outputs are distributed
among many automata that interact with each other

We will focus on decision problems

Set of all
finite length

binary strings

Uniform & Non-Uniform
Computation

What is a program for computing a function?

Uniform: A finite length string that encodes an automaton (in a
“standard” model of computation)

Same program can be fed inputs of any length

Non-Uniform: A different program allowed for each input length

The full program is an infinite string encoding { P0, P1, P2, … }

Unrealistic model

A function f : {0,1}n → {0,1} can be represented by a bit-string
of length 2n (truth table). Pn can simply have this string
hardcoded into it

Interesting question for non-uniform computation: How fast and
small can the program Pn be for a given function f?

Uncomputability
A decision problem, f : {0,1}* → {0,1}: An infinite string, encoding Lf

A (uniform) program: a finite string

There are only countably many programs, but there are
uncountably many problems!

For most problems, there is no program computing it!

This argument works irrespective of the details of the model of
computation

Q1: Does the choice of the model affect which functions are
computable and which are not?

Q2: Most of the uncountably many uncomputable problems are
“uninteresting.” Are there interesting problems that are
uncomputable?

Uncomputability

Does the choice of the model affect which functions are
computable and which are not?

Not really!

Several standard models of computation have been proposed, but
they are powerful enough to simulate each other

Examples: Lambda Calculus, Turing Machines, and Random
Access Machines

Church-Turing thesis: The standard models so far (which are all
equivalent to each other) are the only models of
“effective” (physically realisable) computation

The Uncomputable
Are there interesting problems that are uncomputable?

Yes!

Hilbert’s 10th problem: find an algorithm to check if a
“Diophantine equation” has a solution

i.e., check if there is an integer solution to all the variables
in a polynomial. (e.g., the ones in Fermat’s last theorem,
x3+y3=z3, x4+y4=z4, ...)

Hilbert’s Entscheidungsproblem: given a statement in first order
logic, check if it is true/provable

(In first order logic, true iff provable)

The Halting Problem: Given a (program,input) pair decide if the
program halts or not

…

shown
uncomputable

in 1970

shown uncomputable by
Church and Turing [1936]

Turing [1936]

Computational Complexity

Computability theory deals with what can be computed
(in various models of computation)

Computational Complexity Theory deals with the amount/
nature of resources needed for solving computable
problems

Time Complexity of a problem: minimum running time
needed by any program to solve n-bit instances of a
problem (in the worst-case: i.e., max over all instances)

Computational Complexity
Time Complexity of a problem: minimum running time needed by
any program to solve n-bit instances of a problem (worst-case:
max over all instances)

Some computational problems take a long time to solve, simply
because the solutions are long

e.g., Tower of Hanoi (exponentially many moves)

But some problems can be hard, even if the output is short — say,
a single bit!

Recall: Such problems (decision problems) can even be
uncomputable!

We will focus on computational complexity of decision problems

Computational Complexity
Church-Turing thesis: Computability of a problem doesn’t depend on
the exact choice of the model (as long as it is as powerful as a
Turing machine)

How about computational complexity of a problem?

Model does matter (a bit)

But mostly, polynomial-time computation in one model is polynomial-
time computable in another model (with a different polynomial)

But (probabilistic) Turing Machines are not known (or believed) to
be able to simulate computation in a "Quantum Turing Machine”
with polynomial overhead

But we will stick to non-quantum models

Polynomial Time
P: class of decision problems which have polynomial time algorithms

Extended Church-Turing thesis: if polynomial time in any
“effective” (realizable) and deterministic computational model,
then polynomial time in the Turing Machine model

What we really care about is having fast algorithms: typically
O(n2), O(n log n), O(n), sub-linear etc.

But since the exact polynomial depends on the computational model
(e.g., random access memory vs. sequential), P is used as a robust
notion that doesn’t change with the model

If complexity is polynomial (i.e., O(nc)) in a (non-quantum) model,
then remains polynomial in all (reasonable) models

NP

Class of decision problems which have polynomial time
algorithms when given some help

NP : non-deterministic polynomial time

P ⊆ NP (need not use the help)

What kind of help? Guidance on what “paths” to explore
during computation

Non-deterministic: multiple ways in which computation
can proceed at each step

P & NP: an analogy
Solving a computational problem is like a treasure-hunt

When you follow an algorithm, you are moving through an
infinite state-space, starting from a state defined by the
problem instance, until you hit the solution, if it exists (or find
out that no solution exists)

Polynomial time algorithm: no matter what the input is, if a
solution exists, it reaches one in O(nc) steps

Non-deterministic polynomial time algorithm: if a solution exists,
if someone could guide the algorithm at every turn, it will
reach a solution in O(nc) steps (or realize that it was misguided)

i.e., if a solution exists, a short & verifiable path to a
solution exists. (Needn’t be easy to find it without guidance.)

P & NP: an analogy
E.g., checking if a
(connected) graph is
2-colorable

Nodes are coloured
one-by-one, until all
coloured, or a
contradiction found

No such algorithm
known for 3-
colourability!

2colourable (G: connected graph) {  
 Q := empty-list  
 s := an arbitrary node in G  
 colour[s] := 0; insert(Q, s)  
 while (Q not empty) {  
 x := pop(Q)  
 c := colour[x]  
 for each neighbour y of x  
 if (colour[y] = c)  
 return false  
 if (y uncoloured)  
 colour[y]:=1-c; insert(Q, y)  
 }  
 return true  
}

But if G is 3-colourable, there exists a short & efficiently verifiable
path to valid colouring (colour first and verify edges one-by-one)

Guidance: which colour to use for each node

Question

Let 2COL and 3COL stand for the decision problems of
2-colourability and 3-colourability of graphs. Consider the
statements:
 (1) 2COL ∈ P (2) 2COL ∈ NP
 (3) 3COL ∈ P (4) 3COL ∈ NP
Then which statements do we know to be true?

A. All statements
B. Only (1) and (4)
C. Only (1), (2) and (4)
D. Only (2) and (3)
E. Only (1) and (2)

1

ZUPF

NP: Alternate View
An alternate equivalent definition of NP: without the notion of
guidance

There is a polynomial-time algorithm to verify a “certificate” that a
solution exists (if it exists)

E.g., certificate is the 3-coloring of a graph. Verifier checks that
every edge is satisfied with the coloring

Decision problem ≡ ∃ cert s.t. Verify(instance,cert) ?

Note: there may not be a certificate to prove (to a polynomial
time verifier) that no solution exists

co-NP: Class of problems with poly-time verifiable
counter-examples (certificate of “no” being the answer)

e.g., 3COL ∈ NP, but not known to be in co-NP

Example: Boolean Circuits
A directed acyclic graph: Boolean valued
wires, AND, OR, NOT gates, inputs, output

Circuit evaluation CKT-VAL: given
circuit C and inputs x, find C(x) (i.e., C’s
boolean output value, on input x)

Can be done very efficiently: if done in
the right order, evaluating each wire
takes O(1) time. CKT-VAL is in P.

CKT-SAT: given circuit C, is there a
“satisfying” input for C (s.t. output=1)?
i.e., ∃x C(x)=1? In NP.

CKT-SAT: given C, is it that there is no
satisfying input. i.e., ∀x C(x)=0? In co-NP.

P vs. NP

The Million Dollar Question: is P=NP?

We know P⊆NP, so the question is if every problem in NP
is in P

Or are there problems where guidance really helps?

Generally believed: P≠NP

In particular, graph 3-colourability and CKT-SAT
believed not to have polynomial time algorithms

Also open is NP = co-NP?

NP-completeness
Graph 3-colourability, CKT-SAT and several other problems in
NP are tightly related to each other

If any one of them is in P, then all of them are in P !

Further, then P = NP !

Proving P≠NP is equivalent to proving (say) CKT-SAT ∉ P

And proving P=NP is the same as proving CKT-SAT ∈ P

NP-Complete problem: Any problem in NP can be reduced to
it in polynomial time

Reducing Problem 1 to Problem 0: Given an instance X of
Problem 1, convert it to an instance Y of Problem 0, s.t. X
has answer yes iff Y has answer yes

NP-completeness

Proving P=NP is the same as proving CKT-SAT ∈ P

About 50 years (and counting) of failed attempts at finding
polynomial-time algorithms for any of the NP complete
problems

Several practically important problems are known to be in NP
or co-NP, but not known to be in P.

Related to finding the smallest circuitry for a device,
finding optimal airline scheduling, breaking encryption
schemes, ...

Widely believed that P≠NP, but no techniques to prove that

Zoo of Complexity Classes

P

PSPACE

EXP

NP

NEXP

L

NL

NPSPACE

ΣkP
PH

NC0

NC1

AC0

AC1

NC AC

NCK

ACK-1

ACK

