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Computation Problems
A discrete computational task can be modelled as that task of 
evaluating a function f : N → N, or f : {0,1}* → {0,1}*


Decision problems: output is a single bit (“yes” or “no”)


f : {0,1}* → {0,1}.  Lf ≜ { x | f(x) = 1 } is called the language 
associated with the decision problem f


More complex notions exist


Interactive (or reactive) computation: inputs can be fed after 
outputs are observed


Multiparty computation: inputs and outputs are distributed 
among many automata that interact with each other


We will focus on decision problems
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Uniform & Non-Uniform 
Computation

What is a program for computing a function?


Uniform: A finite length string that encodes an automaton (in a 
“standard” model of computation)


Same program can be fed inputs of any length


Non-Uniform: A different program allowed for each input length


The full program is an infinite string encoding { P0, P1, P2, … }


Unrealistic model


A function f : {0,1}n → {0,1} can be represented by a bit-string 
of length 2n (truth table). Pn can simply have this string 
hardcoded into it


Interesting question for non-uniform computation: How fast and 
small can the program Pn be for a given function f?



Uncomputability
A decision problem, f : {0,1}* → {0,1}: An infinite string, encoding Lf


A (uniform) program: a finite string


There are only countably many programs, but there are 
uncountably many problems!


For most problems, there is no program computing it!


This argument works irrespective of the details of the model of 
computation


Q1: Does the choice of the model affect which functions are 
computable and which are not?


Q2: Most of the uncountably many uncomputable problems are 
“uninteresting.”  Are there interesting problems that are 
uncomputable?



Uncomputability

Does the choice of the model affect which functions are 
computable and which are not?


Not really!


Several standard models of computation have been proposed, but 
they are powerful enough to simulate each other


Examples: Lambda Calculus, Turing Machines, and Random 
Access Machines


Church-Turing thesis: The standard models so far (which are all 
equivalent to each other) are the only models of 
“effective” (physically realisable) computation



The Uncomputable
Are there interesting problems that are uncomputable?


Yes!


Hilbert’s 10th problem: find an algorithm to check if a 
“Diophantine equation” has a solution 


i.e., check if there is an integer solution to all the variables 
in a polynomial. (e.g., the ones in Fermat’s last theorem, 
x3+y3=z3, x4+y4=z4, ...)


Hilbert’s Entscheidungsproblem: given a statement in first order 
logic, check if it is true/provable


(In first order logic, true iff provable)


The Halting Problem: Given a (program,input) pair decide if the 
program halts or not


…  

shown 
uncomputable 

in 1970

shown uncomputable by 
Church and Turing [1936]

Turing [1936]



Computational Complexity

Computability theory deals with what can be computed 
(in various models of computation)


Computational Complexity Theory deals with the amount/
nature of resources needed for solving computable 
problems


Time Complexity of a problem: minimum running time 
needed by any program to solve n-bit instances of a 
problem (in the worst-case: i.e., max over all instances)



Computational Complexity
Time Complexity of a problem: minimum running time needed by 
any program to solve n-bit instances of a problem (worst-case: 
max over all instances)


Some computational problems take a long time to solve, simply 
because the solutions are long


e.g., Tower of Hanoi (exponentially many moves)


But some problems can be hard, even if the output is short — say, 
a single bit!


Recall: Such problems (decision problems) can even be 
uncomputable!


We will focus on computational complexity of decision problems



Computational Complexity
Church-Turing thesis: Computability of a problem doesn’t depend on 
the exact choice of the model (as long as it is as powerful as a 
Turing machine)


How about computational complexity of a problem?


Model does matter (a bit)


But mostly, polynomial-time computation in one model is polynomial-
time computable in another model (with a different polynomial)


But (probabilistic) Turing Machines are not known (or believed) to 
be able to simulate computation in a "Quantum Turing Machine” 
with polynomial overhead


But we will stick to non-quantum models



Polynomial Time
P: class of decision problems which have polynomial time algorithms


Extended Church-Turing thesis: if polynomial time in any 
“effective” (realizable) and deterministic computational model, 
then polynomial time in the Turing Machine model 


What we really care about is having fast algorithms: typically 
O(n2), O(n log n), O(n), sub-linear etc.


But since the exact polynomial depends on the computational model 
(e.g., random access memory vs. sequential), P is used as a robust 
notion that doesn’t change with the model


If complexity is polynomial (i.e., O(nc) ) in a (non-quantum) model, 
then remains polynomial in all (reasonable) models



NP

Class of decision problems which have polynomial time 
algorithms when given some help


NP : non-deterministic polynomial time


P ⊆ NP  (need not use the help)


What kind of help? Guidance on what “paths” to explore 
during computation


Non-deterministic: multiple ways in which computation 
can proceed at each step



P & NP: an analogy
Solving a computational problem is like a treasure-hunt


When you follow an algorithm, you are moving through an 
infinite state-space, starting from a state defined by the 
problem instance, until you hit the solution, if it exists (or find 
out that no solution exists)


Polynomial time algorithm: no matter what the input is, if a 
solution exists, it reaches one in O(nc) steps


Non-deterministic polynomial time algorithm: if a solution exists, 
if someone could guide the algorithm at every turn, it will 
reach a solution in O(nc) steps (or realize that it was misguided)


i.e., if a solution exists, a short & verifiable path to a 
solution exists. (Needn’t be easy to find it without guidance.)



P & NP: an analogy
E.g., checking if a 
(connected) graph is 
2-colorable


Nodes are coloured 
one-by-one, until all 
coloured, or a 
contradiction found


No such algorithm 
known for 3-
colourability!

2colourable (G: connected graph) {  
   Q := empty-list  
   s := an arbitrary node in G  
   colour[s] := 0; insert(Q, s)  
   while (Q not empty) {  
      x := pop(Q)  
      c := colour[x]  
      for each neighbour y of x  
         if (colour[y] = c)  
            return false  
         if (y uncoloured)  
            colour[y]:=1-c; insert(Q, y)  
   }  
   return true  
}

But if G is 3-colourable, there exists a short & efficiently verifiable  
path to valid colouring (colour first and verify edges one-by-one)


Guidance: which colour to use for each node



Question

Let 2COL and 3COL stand for the decision problems of  
2-colourability and 3-colourability of graphs. Consider the 
statements: 
       (1)  2COL ∈ P         (2)  2COL ∈ NP 
       (3)  3COL ∈ P         (4)  3COL ∈ NP 
Then which statements do we know to be true? 
 
A.  All statements 
B.  Only (1) and (4) 
C.  Only (1), (2) and (4) 
D.  Only (2) and (3) 
E.  Only (1) and (2)

1

ZUPF



NP: Alternate View
An alternate equivalent definition of NP: without the notion of 
guidance


There is a polynomial-time algorithm to verify a “certificate” that a 
solution exists (if it exists)


E.g., certificate is the 3-coloring of a graph. Verifier checks that 
every edge is satisfied with the coloring


Decision problem ≡ ∃ cert s.t.  Verify(instance,cert) ?


Note: there may not be a certificate to prove (to a polynomial 
time verifier) that no solution exists


co-NP: Class of problems with poly-time verifiable  
counter-examples (certificate of “no” being the answer)


e.g., 3COL ∈ NP, but not known to be in co-NP



Example: Boolean Circuits
A directed acyclic graph: Boolean valued 
wires, AND, OR, NOT gates, inputs, output


Circuit evaluation CKT-VAL:   given 
circuit C and inputs x, find C(x) (i.e., C’s 
boolean output value, on input x)


Can be done very efficiently: if done in 
the right order, evaluating each wire 
takes O(1) time. CKT-VAL is in P.


CKT-SAT: given circuit C, is there a 
“satisfying” input for C (s.t. output=1)?  
i.e., ∃x C(x)=1?  In NP.


               


CKT-SAT: given C, is it that there is no 
satisfying input. i.e., ∀x C(x)=0? In co-NP.



P vs. NP

The Million Dollar Question:  is P=NP? 


We know P⊆NP, so the question is if every problem in NP 
is in P


Or are there problems where guidance really helps?


Generally believed: P≠NP


In particular, graph 3-colourability and CKT-SAT 
believed not to have polynomial time algorithms


Also open is NP = co-NP?



NP-completeness
Graph 3-colourability, CKT-SAT and several other problems in 
NP are tightly related to each other


If any one of them is in P, then all of them are in P !


Further, then P = NP !


Proving P≠NP is equivalent to proving (say) CKT-SAT ∉ P


And proving P=NP is the same as proving CKT-SAT ∈ P


NP-Complete problem: Any problem in NP can be reduced to 
it in polynomial time


Reducing Problem 1 to Problem 0: Given an instance X of 
Problem 1, convert it to an instance Y of Problem 0, s.t. X 
has answer yes iff Y has answer yes



NP-completeness

Proving P=NP is the same as proving CKT-SAT ∈ P


About 50 years (and counting) of failed attempts at finding 
polynomial-time algorithms for any of the NP complete 
problems


Several practically important problems are known to be in NP 
or co-NP, but not known to be in P. 


Related to finding the smallest circuitry for a device, 
finding optimal airline scheduling, breaking encryption 
schemes, ...


Widely believed that P≠NP, but no techniques to prove that
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