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Branching Programs



Example: a (simplistic) syntax for arithmetic expressions


Expr → Expr + Expr 
Expr → Expr × Expr 
Expr → Var 
Var → a 
Var → b 
Var → c

Start Symbol: Expr  
Terminals: +,×,a,b,c


e.g.  a + b × c


(This grammar is “ambiguous” since there is another parse tree for 
the same string)
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Set of “rewriting” rules over 
symbols

Also part of 
the grammar



G generates the tree with one node, labeled 
with the start symbol


If G generates T which has a leaf labeled  
with a non-terminal X, it also generates T’ 
where the leaf is “expanded” using a 
rule X → α1 … αt


“Left-to-right order” of the children 
important while expanding


Order in which expansions are done is not 
important (we only care about the tree)
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Language of G: all strings “generated” by it


Defined in terms of all “parse trees”  
generated by it

Start Symbol: Expr  
Terminals: +,×,a,b,c  
 
Expr → Expr + Expr 
Expr → Expr × Expr 
Expr → Var 
Var → a 
Var → b 
Var → c



If G generates a tree T, with all leaves 
labeled by terminals, then G is said to 
generate the string of terminals obtained by 
reading the leaves left-to-right


Terminal 𝟄 denotes the empty string


e.g., S → SS | a | b | 𝟄  

The string ab can be parsed as having  
no 𝟄, or as (𝟄a)(𝟄b) or (𝟄)((ab)(𝟄𝟄)) etc.


If same string can be generated by  
different trees, an “ambiguous” grammar
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Start Symbol: Expr  
Terminals: +,×,a,b,c  
 
Expr → Expr + Expr 
Expr → Expr × Expr 
Expr → Var 
Var → a 
Var → b 
Var → c

Language of G: all strings “generated” by it


Defined in terms of all “parse trees”  
generated by it



Question

Which of the following strings is generated by (i.e., have a 
valid parse tree under) the grammar S → aSa | bSb | 𝟄  

(with start symbol S, and terminals a,b,𝟄)? 
 
      A.   abSab 
      B.   aabb 
      C.   abba 
      D.   abab 
      E.   None of the above
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CFG: Proving claims

Since strings produced by a grammar are recursively defined,  
can often use induction to prove claims


e.g. S → aSa | bSb | a | b | 𝟄


Claim: any string in this grammar’s language is a palindrome


A string X, |X|=n is a palindrome if for i=1 to n, X[i] = X[n+1-i]


Proof by induction on the height of the tree generating the 
string


Base case: h=1.  Strings generated are a, b, 𝟄, all palindromes ✔ 



CFG: Proving claims
S → aSa | bSb | a | b | 𝟄


Claim: any string in this grammar’s language is a palindrome


Base case: height=1.  Strings generated are a, b, 𝟄, all palindromes ✔ 


Induction step: for all k ≥ 1, 
Hypothesis: suppose strings from trees of height ≤ k are palindromes 
To prove: Then, trees of height k+1 generate palindromes


Consider a tree with height k+1. Root has S→aSa or S→bSb. 


String generated be X. Let |X|=n. X[1]=X[n] ✔


i.e., for i=1 and n, X[i]=X[(n+1)-i]. For i=2 to n-1?


Let Y be the string generated by the subtree rooted at the middle 
child of root, |Y|=n-2.


Y generated by a tree of height k. By IH, Y is a palindrome 


For i=2 to n-1,  X[i] = Y[i-1] = Y[(n-2)+1-(i-1)] = Y[n-i] = X[(n+1)-i] ✔

 For i=1 to n:=|X|, 
X[i] = X[n+1-i]



CFG: Proving claims

Often prove a claim about all subtrees of trees generated 
by the grammar


With any non-terminal (or even terminal) at the root


Even if interested only in special cases (e.g. when root is 
a start symbol and leaves are all terminals)


Recurring theme in proofs by induction: sometimes easier to 
prove stronger statements!



CFG: Proving claims
e.g. S → AB | 𝟄 
     A → a | AS | SA 
     B → b | BS | SB 
start symbol: S, terminals {a,b,𝟄} 


Claim: Every string generated by the grammar has equal 
numbers of a’s and b’s


Stronger claim: Every string generated by S has #a’s = #b’s, 
every string generated by A has #a’s = #b’s + 1 and every 
string generated by B has #b’s = #a’s+1


By induction on the height of the grammar generating the 
string (starting with S, A or B at the root)
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Formulas

A recipe for creating a new proposition from 
given propositions


e.g. f(p,q) ≜ (p ∧ q) ∨ ¬(p ∨ q)


Exercise: A grammar for all formulas on a 
given set of variables


The parse tree of a formula gives a way to 
evaluate the formula


A special case of a circuit
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Circuits
A circuit is a directed acyclic graph (DAG)


Edges: wires carrying values from a set. 
(e.g., boolean circuit: values in {0,1})


Nodes: Operator gates, constant gates, 
inputs, output(s)


e.g., for boolean circuits, operators can 
be AND, OR and NOT


May allow m-ary gates for AND etc. 


Each wire comes out of a unique gate, 
but a wire might fan-out


Can evaluate wires according to a 
topologically sorted order of gates they 
come out of
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Boolean Circuits

A circuit can take an input of a fixed 
length only


A circuit family: (C0,C1,C2,…) where Cn takes 
inputs in {0,1}n


A model for non-uniform computation


Quantities of interest (as a function of 
n): Circuit size (i.e., number of wires), 
and circuit depth 11
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Boolean Circuits
Every boolean function has a circuit family 
of size O(2n) and depth O(1), with AND, OR 
and NOT gates


Let S = { s∈{0,1}n | f(s) = 1 }. |S|  ≤ 2n.


Then f(x) = ∨s∈S (x=s) 

            = ∨s∈S ∧i=1 to n (xi=si)


Circuit (in fact, formula):


 (xi=1) and (xi=0) are x and ¬x. Use 
one n-ary AND gate for each s∈S, to 
check if (x=s), and an |S|-ary OR gate 
as the output gate
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Can be 
improved to 

O(2n/n)



Boolean Circuits
Allowing m-ary gates not crucial


Exercise: implement an m-ary AND gate 
using a tree of binary AND gates


With binary gates, circuit size typically 
defined as number of gates


The exact choice of gates (AND, OR, NOT) 
not crucial


Exercise: implement each gate using


NAND gates alone


(AND, XOR) gates alone
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A Lower Bound on Circuit Size
Claim: Not all functions have circuits of size ≤ 2n/(2n)


Proof: By counting the number of small circuits. W.l.o.g., use 
only binary NAND gates


How many circuits with N gates (including input gates)?


Consider a topological sorting of the gates, with n input 
gates first and the output gate last. For i>n, ith gate can 
choose its two inputs in (i-1)2 ways. So, at most  
[n⋅(n+1)⋅…⋅(N-1)]2 ≤ N2N circuits


How many functions? 22n


If all functions had size N circuits, then N2N ≥ 22n 


But if N ≤ 2n/(2n), then N2N < (2n)(2n/n) < 22n !


