
More Models of Computation
Lecture 24

Context Free Grammars
Circuits

Decision Trees

Branching Programs

Example: a (simplistic) syntax for arithmetic expressions

Expr → Expr + Expr
Expr → Expr × Expr
Expr → Var
Var → a
Var → b
Var → c

Start Symbol: Expr
Terminals: +,×,a,b,c

e.g. a + b × c

(This grammar is “ambiguous” since there is another parse tree for
the same string)

Context-Free Grammar

a

b c

Var Var

Expr × ExprVar

Expr + Expr

Expr

Set of “rewriting” rules over
symbols

Also part of
the grammar

G generates the tree with one node, labeled
with the start symbol

If G generates T which has a leaf labeled
with a non-terminal X, it also generates T’
where the leaf is “expanded” using a
rule X → α1 … αt

“Left-to-right order” of the children
important while expanding

Order in which expansions are done is not
important (we only care about the tree)

Context-Free Grammar

a

b c

Var Var

Expr × ExprVar

Expr + Expr

Expr

Language of G: all strings “generated” by it

Defined in terms of all “parse trees”
generated by it

Start Symbol: Expr
Terminals: +,×,a,b,c

Expr → Expr + Expr
Expr → Expr × Expr
Expr → Var
Var → a
Var → b
Var → c

If G generates a tree T, with all leaves
labeled by terminals, then G is said to
generate the string of terminals obtained by
reading the leaves left-to-right

Terminal 𝟄 denotes the empty string

e.g., S → SS | a | b | 𝟄

The string ab can be parsed as having
no 𝟄, or as (𝟄a)(𝟄b) or (𝟄)((ab)(𝟄𝟄)) etc.

If same string can be generated by
different trees, an “ambiguous” grammar

Context-Free Grammar

a

b c

Var Var

Expr × ExprVar

Expr + Expr

Expr

Start Symbol: Expr
Terminals: +,×,a,b,c

Expr → Expr + Expr
Expr → Expr × Expr
Expr → Var
Var → a
Var → b
Var → c

Language of G: all strings “generated” by it

Defined in terms of all “parse trees”
generated by it

Question

Which of the following strings is generated by (i.e., have a
valid parse tree under) the grammar S → aSa | bSb | 𝟄

(with start symbol S, and terminals a,b,𝟄)?

 A. abSab
 B. aabb
 C. abba
 D. abab
 E. None of the above

1

NNXS

CFG: Proving claims

Since strings produced by a grammar are recursively defined,
can often use induction to prove claims

e.g. S → aSa | bSb | a | b | 𝟄

Claim: any string in this grammar’s language is a palindrome

A string X, |X|=n is a palindrome if for i=1 to n, X[i] = X[n+1-i]

Proof by induction on the height of the tree generating the
string

Base case: h=1. Strings generated are a, b, 𝟄, all palindromes ✔

CFG: Proving claims
S → aSa | bSb | a | b | 𝟄

Claim: any string in this grammar’s language is a palindrome

Base case: height=1. Strings generated are a, b, 𝟄, all palindromes ✔

Induction step: for all k ≥ 1,
Hypothesis: suppose strings from trees of height ≤ k are palindromes
To prove: Then, trees of height k+1 generate palindromes

Consider a tree with height k+1. Root has S→aSa or S→bSb.

String generated be X. Let |X|=n. X[1]=X[n] ✔

i.e., for i=1 and n, X[i]=X[(n+1)-i]. For i=2 to n-1?

Let Y be the string generated by the subtree rooted at the middle
child of root, |Y|=n-2.

Y generated by a tree of height k. By IH, Y is a palindrome

For i=2 to n-1, X[i] = Y[i-1] = Y[(n-2)+1-(i-1)] = Y[n-i] = X[(n+1)-i] ✔

 For i=1 to n:=|X|,
X[i] = X[n+1-i]

CFG: Proving claims

Often prove a claim about all subtrees of trees generated
by the grammar

With any non-terminal (or even terminal) at the root

Even if interested only in special cases (e.g. when root is
a start symbol and leaves are all terminals)

Recurring theme in proofs by induction: sometimes easier to
prove stronger statements!

CFG: Proving claims
e.g. S → AB | 𝟄
 A → a | AS | SA
 B → b | BS | SB
start symbol: S, terminals {a,b,𝟄}

Claim: Every string generated by the grammar has equal
numbers of a’s and b’s

Stronger claim: Every string generated by S has #a’s = #b’s,
every string generated by A has #a’s = #b’s + 1 and every
string generated by B has #b’s = #a’s+1

By induction on the height of the grammar generating the
string (starting with S, A or B at the root)

()

()

Formulas

A recipe for creating a new proposition from
given propositions

e.g. f(p,q) ≜ (p ∧ q) ∨ ¬(p ∨ q)

Exercise: A grammar for all formulas on a
given set of variables

The parse tree of a formula gives a way to
evaluate the formula

A special case of a circuit

p q

∧

p q

∨

∨

¬

Circuits
A circuit is a directed acyclic graph (DAG)

Edges: wires carrying values from a set.
(e.g., boolean circuit: values in {0,1})

Nodes: Operator gates, constant gates,
inputs, output(s)

e.g., for boolean circuits, operators can
be AND, OR and NOT

May allow m-ary gates for AND etc.

Each wire comes out of a unique gate,
but a wire might fan-out

Can evaluate wires according to a
topologically sorted order of gates they
come out of

11

0

Boolean Circuits

A circuit can take an input of a fixed
length only

A circuit family: (C0,C1,C2,…) where Cn takes
inputs in {0,1}n

A model for non-uniform computation

Quantities of interest (as a function of
n): Circuit size (i.e., number of wires),
and circuit depth 11

0

Boolean Circuits
Every boolean function has a circuit family
of size O(2n) and depth O(1), with AND, OR
and NOT gates

Let S = { s∈{0,1}n | f(s) = 1 }. |S| ≤ 2n.

Then f(x) = ∨s∈S (x=s)

 = ∨s∈S ∧i=1 to n (xi=si)

Circuit (in fact, formula):

 (xi=1) and (xi=0) are x and ¬x. Use
one n-ary AND gate for each s∈S, to
check if (x=s), and an |S|-ary OR gate
as the output gate

11

0

Can be
improved to

O(2n/n)

Boolean Circuits
Allowing m-ary gates not crucial

Exercise: implement an m-ary AND gate
using a tree of binary AND gates

With binary gates, circuit size typically
defined as number of gates

The exact choice of gates (AND, OR, NOT)
not crucial

Exercise: implement each gate using

NAND gates alone

(AND, XOR) gates alone

11

0

A Lower Bound on Circuit Size
Claim: Not all functions have circuits of size ≤ 2n/(2n)

Proof: By counting the number of small circuits. W.l.o.g., use
only binary NAND gates

How many circuits with N gates (including input gates)?

Consider a topological sorting of the gates, with n input
gates first and the output gate last. For i>n, ith gate can
choose its two inputs in (i-1)2 ways. So, at most
[n⋅(n+1)⋅…⋅(N-1)]2 ≤ N2N circuits

How many functions? 22n

If all functions had size N circuits, then N2N ≥ 22n

But if N ≤ 2n/(2n), then N2N < (2n)(2n/n) < 22n !

