More Models of Computation

Lecture 24

Context Free Grammars Circuits Decision Trees Branching Programs

Context-Free Grammar

Example: a (simplistic) syntax for arithmetic expressions

Context-Free Grammar

Language of G: all strings "generated" by it

- Defined in terms of all "parse trees" generated by it
- G generates the tree with one node, labeled with the start symbol
- If G generates T which has a leaf labeled with a non-terminal X, it also generates T' where the leaf is "expanded" using a rule $X \rightarrow \alpha_1 \dots \alpha_t$
 - *Left-to-right order" of the children important while expanding
- Order in which expansions are done is not important (we only care about the tree)

Start Symbol: Expr Terminals: +,×,a,b,c

```
Expr \rightarrow Expr + Expr
Expr \rightarrow Expr \times Expr
Expr \rightarrow Var
Var \rightarrow a
Var \rightarrow b
Var \rightarrow c
  Expr
   +
               Expr
Expr
                ×
                           Expr
 Var
                             Var
   b
```

Expr

Var

Context-Free Grammar

Language of G: all strings "generated" by it

- Defined in terms of all "parse trees" generated by it
- If G generates a tree T, with all leaves labeled by terminals, then G is said to generate the string of terminals obtained by reading the leaves left-to-right
 - \odot Terminal ϵ denotes the empty string
 - \odot e.g., S \rightarrow SS | a | b | ϵ

The string ab can be parsed as having no ϵ , or as (ϵ a)(ϵ b) or (ϵ)((ab)($\epsilon\epsilon$)) etc.

If same string can be generated by different trees, an "ambiguous" grammar Start Symbol: Expr Terminals: +,×,a,b,c

```
Expr \rightarrow Expr + Expr
Expr \rightarrow Expr \times Expr
Expr \rightarrow Var
Var \rightarrow a
Var \rightarrow b
Var \rightarrow c
  Expr
   +
               Expr
Expr
                ×
                           Expr
 Var
                            Var
   b
```

Expr

Var

٥

Question

• Which of the following strings is generated by (i.e., have a valid parse tree under) the grammar $\underline{S} \rightarrow \underline{aSa} \mid \underline{bSb} \mid \underline{\epsilon}$ (with start symbol S, and terminals $\underline{a}, \underline{b}, \underline{\epsilon}$)?

- A. abSab
- B. aabb
- C. abba
- D. abab
- E. None of the above

- Since strings produced by a grammar are recursively defined, can often use induction to prove claims
 - \circ e.g. S \rightarrow aSa | bSb | a | b | ϵ
 - Claim: any string in this grammar's language is a palindrome
 - A string X, |X|=n is a palindrome if for i=1 to n, X[i] = X[n+1-i]
 - Proof by induction on the height of the tree generating the string

o S \rightarrow aSa | bSb | a | b | ϵ

For i=1 to n:=|X|, X[i] = X[n+1-i]

- Claim: any string in this grammar's language is a palindrome
- Base case: height=1. Strings generated are a, b, ϵ , all palindromes \checkmark
- Induction step: for all k ≥ 1, Hypothesis: suppose strings from trees of height ≤ k are palindromes To prove: Then, trees of height k+1 generate palindromes
 - Consider a tree with height k+1. Root has $S \rightarrow aSa$ or $S \rightarrow bSb$.
 - String generated be X. Let |X|=n. X[1]=X[n]

 - Let Y be the string generated by the subtree rooted at the middle child of root, |Y|=n-2.
 - Y generated by a tree of height k. By IH, Y is a palindrome
 - For i=2 to n-1, X[i] = Y[i-1] = Y[(n-2)+1-(i-1)] = Y[n-i] = X[(n+1)-i]

Often prove a claim about <u>all subtrees</u> of trees generated by the grammar

With any non-terminal (or even terminal) at the root

Even if interested only in special cases (e.g. when root is a start symbol and leaves are all terminals)

Recurring theme in proofs by induction: sometimes easier to prove stronger statements!

- e.g. S → AB | ε
 A → a | AS | SA
 B → b | BS | SB
 start symbol: S, terminals {a,b,ε}
- Claim: Every string generated by the grammar has equal numbers of a's and b's
- Stronger claim: Every string generated by S has #a's = #b's, every string generated by A has #a's = #b's + 1 and every string generated by B has #b's = #a's+1
- By induction on the height of the grammar generating the string (starting with S, A or B at the root)

Formulas

 A recipe for creating a new proposition from given propositions

Set e.g. f(p,q) ≜ (p ∧ q) ∨ ¬(p ∨ q)

- Exercise: A grammar for all formulas on a given set of variables
- The parse tree of a formula gives a way to evaluate the formula
 - A special case of a circuit

Circuits

A circuit is a directed acyclic graph (DAG)

- Edges: wires carrying values from a set.
 (e.g., boolean circuit: values in {0,1})
- Nodes: Operator gates, constant gates, inputs, output(s)
 - e.g., for boolean circuits, operators can be AND, OR and NOT
 - May allow m-ary gates for AND etc.
- Each wire comes out of a unique gate, but a wire might fan-out
- Can evaluate wires according to a topologically sorted order of gates they come out of

Boolean Circuits

- A circuit can take an input of a fixed length only
- A circuit <u>family</u>: (C₀,C₁,C₂,...) where C_n takes inputs in {0,1}ⁿ
 - A model for non-uniform computation
 - Quantities of interest (as a function of n): Circuit size (i.e., number of wires), and circuit depth

Can be improved to O(2ⁿ/n)

Boolean Circuits

Every boolean function has a circuit family of size O(2ⁿ) and depth O(1), with AND, OR and NOT gates

Let S = { s∈{0,1}ⁿ | f(s) = 1 }. |S| ≤ 2ⁿ.

• Then $f(x) = \bigvee_{s \in S} (x=s)$ = $\bigvee_{s \in S} \bigwedge_{i=1 \text{ to } n} (x_i=s_i)$

Oircuit (in fact, formula):

 (x_i=1) and (x_i=0) are x and ¬x. Use one n-ary AND gate for each s∈S, to check if (x=s), and an |S|-ary OR gate as the output gate

Boolean Circuits

Allowing m-ary gates not crucial

Exercise: implement an m-ary AND gate
 using a tree of binary AND gates

 With binary gates, circuit size typically defined as number of gates

The exact choice of gates (AND, OR, NOT) not crucial

Exercise: implement each gate using

MAND gates alone

(AND, XOR) gates alone

A Lower Bound on Circuit Size

- Claim: Not all functions have circuits of size $\leq 2^n/(2n)$
- Proof: By counting the number of small circuits. W.l.o.g., use only binary NAND gates
- How many circuits with N gates (including input gates)?
 - Consider a topological sorting of the gates, with n input gates first and the output gate last. For i>n, ith gate can choose its two inputs in (i-1)² ways. So, at most [n · (n+1) · … · (N-1)]² ≤ N^{2N} circuits
- How many functions? 2²ⁿ
- If all functions had size N circuits, then N^{2N} ≥ 2^{2^n}
 - But if N ≤ $2^n/(2n)$, then N^{2N} < $(2^n)^{(2^n/n)}$ < 2^{2^n} !