
Wrap Up!
Lecture 25

Decision Trees & Branching Programs

Many Topics Not Covered!



Decision Trees
Another model of non-uniform computation


A full binary tree with each internal 
node labelled with an “elementary” 
boolean function of the input


Two children correspond to answers 
true and false


Leaves are labelled with outputs


Evaluating a decision tree: 


start from the root and at each node, 
evaluate the node’s function on the input, 
and go to the child corresponding to the 
outcome


At the leaf produce the output
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Decision Trees

Example: f(x1,x2,x3) = x1 ∧ (x2 ∨ x3)


How about x1 ⊕ … ⊕ xn ?


Every function f: {0,1}n → {0,1} has a trivial 
decision tree with 2n leaves


At level i, use Qi(x1,…,xn) = xi


For each input (x1,…,xn) a separate leaf, which 
is labelled with output f(x1,…,xn)
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Decision Trees
Another Example: Sorting


Input: (x1,…,xn), distinct


Output: Sorted list


Each Q is of the form (xi < xj)


Any sorting algorithm that uses “black-box” 
comparisons defines such a decision tree


All n! possible orderings should  
appear as leaves in this tree


#comparisons in the worst case  
= depth of the tree


If depth d, need 2d ≥ #leaves ≥ n!


d ≥ log n! ≥ c⋅n log n

x1<x2

x2<x3 x2<x3

x1,x2,x3
x3,x2,x1 x1<x3 x1<x3

x2,x3,x1 x2,x1,x3 x3,x1,x2 x1,x3,x2



Branching Programs
A more compact version of a decision tree: Equivalent 
nodes in the tree can be shared by their parents


Results in a DAG


E.g., x1 ⊕ … ⊕ xn has a width-2 branching program 
with O(n) nodes


Permutation Branching Program: Levelled DAG of 
width w at each level, with 0-edges mapping nodes at 
a level bijectively to the nodes at the next level; 
same for 1-edges


Exercise: Convert a BP to a circuit of similar size


Barrington’s Theorem: A depth d boolean circuit with 
binary gates for f: {0,1}n → {0,1} can be turned into a 
permutation branching program for f, with width 5, 
and length ≤ 4d
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Topics covered

Basic tools for expressing ideas

Logic, Proofs,  

Sets, Relations, Functions

Numbers and 
patterns therein

Graphs

Recursive Def. 
Generating Fun.

TreesCountingInduction

Bounding

big-O

Computation 
Models



Topics not covered

Probability

But Could Have Been

Abstract 
Algebra

Expectation & Variance. Conditional Probability. 
Entropy and Mutual Information …

(Discrete) Groups, Rings and Fields. Polynomials. 
Linear Algebra (over Finite Fields).

Codes Error Correcting Codes. Compression.

More Graphs

More 
Combinatorics

Directed graphs, network flow, planar graphs, …

Matroids, Designs, Ramsey Theory,  
Probabilistic Method, …
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Probability

But Could Have Been

Abstract 
Algebra

Expectation & Variance. Conditional Probability. 
Entropy and Mutual Information …

(Discrete) Groups, Rings and Fields. Polynomials. 
Linear Algebra (over Finite Fields).

Codes Error Correcting Codes. Compression.

More Graphs

More 
Combinatorics

Directed graphs, network flow, planar graphs, …

Matroids, Designs, Extremal Combinatorics,  
Probabilistic Method, …

An illustrative 
example from 
cryptography: 
Secret Sharing



A Game

A “dealer” and two “players” Alice and Bob (computationally 
unbounded)


Dealer has a message, say two bits m1m2


She wants to “share” it among the two players so that 
neither player by herself/himself learns anything about the 
message, but together they can find it


Bad idea: Give m1 to Alice and m2 to Bob


Other ideas?



Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b 
and gives a := m⊕b to Alice and b to Bob


Together they can recover m as a⊕b


Each party by itself learns nothing about m: for each possible 
value of m, its share has the same probability distribution 
 
 

i.e., the vector of probabilities (Pr[a=0], Pr[a=1]) is the same 
( namely, (0.5,0.5) ) irrespective of the message. Same for 
(Pr[b=0], Pr[b=1])

m = 0 ↦ (a,b) = (0,0) or (1,1) w/ probability 1/2 each

m =  1 ↦ (a,b) = (1,0) or (0,1) w/ probability 1/2 each



Sharing Larger Messages
To share a message m∈Zn, Dealer picks a uniformly random b∈Zn 

and gives a := m-b (in Zn) to Alice and b to Bob


Together they can recover m as a+b (in Zn)


Each party by itself learns nothing about m: for each possible 
value of m, its share has the same probability distribution 
 
 

i.e., the vector of probabilities (Pr[a=0],…,Pr[a=n-1]) is the 
same ( namely, (1/n,…,1/n) ) irrespective of the message. Same 
for (Pr[b=0],…,Pr[b=n-1])

m ↦ (a,b) = (m,0), (m-1,1), (m-2,2), …, (m+1,n-1) w/ probability 1/n each



Sharing Larger Messages
Same idea works over any finite group


(Finite) Group: a (finite) set G along with a binary operation ∗, s.t.


Associative:  ∀a,b,c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c) 


Identity Exists:  ∃ e∈G s.t. ∀a ∈ G, a ∗ e = e ∗ a = a


Inverse Exists:   ∀a ∈ G, ∃ a-1 ∈ G, s.t.  a ∗ a-1 = a-1 ∗ a = e


Optionally, Commutative:  ∀a,b ∈ G, a ∗ b = b ∗ a


E.g.: (Zn,+), (Z*n,×), (permutations of [n], composition), 

(invertible square matrices, matrix multiplication), …


To secret share m, pick random a,b∈G conditioned on a∗b=m


i.e., pick random b and set a := m ∗ b-1


∀m∈G, each of a,b is uniformly random over G 

∗ : G×G → G

Makes sense 
as G is finite



Sharing Among N Parties
Extends to sharing a message among N parties, so that up to N-1 
parties learn nothing about the message


To secret share m, pick random a1,…,aN ∈G conditioned on  
a1∗…∗aN =m


e.g., pick random a2,…,aN and set a1 := m ∗ (a2 ∗ … ∗ aN)-1


For any set of N-1 parties — say all but ith party — the 
combination of shares they obtain is distributed the same way 
irrespective of what the message m is.


Fix m∈G. Consider any g1,…,gi-1,gi+1,…,gN ∈ G


Pr[(a1,…,ai-1,ai+1,…,aN) = (g1,…,gi-1,gi+1,…,gN)]  
     = Pr[(a2,…,aN) = (g2,…,gN)] where gi is the unique value s.t 
g1∗…∗gN = m. i.e., gi = (g1∗…∗gi-1)-1 ∗ m ∗ (gi+1∗…∗gN)-1


So, Pr[(a1,…,ai-1,ai+1,…,aN) = (g1,…,gi-1,gi+1,…,gN)] = 1/|G|N-1



Threshold Secret-Sharing

(N,T)-secret-sharing


Divide a message m into N shares a1,...,aN, such that 


any T shares are enough to reconstruct the secret


up to T-1 shares should have no information about the 
secret


So far: (N,N) secret-sharing
e.g., (a1,…,aT-1) has the same 
distribution for every m in  

the message space



Threshold Secret-Sharing
Construction: (N,2) secret-sharing (for N≥2)


Message-space = share-space = F, a finite field (e.g. integers mod prime)


Share(m): pick random r. Let ai = r⋅ci + m (for i=1,...,N < |F|)


Reconstruct(ai, aj): r = (ai-aj)/(ci-cj); m = ai - r⋅ci


Each ai by itself is uniformly distributed,  
irrespective of m  [Why?]


“Geometric” interpretation


Sharing picks a random “line” y = f(x), 
such that f(0)=M. Shares ai = f(ci). 


ai is independent of m: exactly one line passing 
through (ci,ai) and (0,m’) for any secret m’


But can reconstruct the line from two points!
0 1 2 3 4 5 6

ci are n distinct,  
non-zero field elements

Since ci-1 exists, exactly one 
solution for r⋅ci+m=d, for 

every value of d



Threshold Secret-Sharing

(N,T) secret-sharing in a (large enough) field F


Generalizing the geometric/algebraic view: instead of lines, use 
polynomials


Share(m): Pick a random degree T-1 polynomial f(X), such that 
f(0)=M. Shares are ai = f(ci).


Random polynomial with f(0)=m: z0 + z1X + z2X2 +...+ zT-1XT-1 by 
picking z0=M and z1,...,zT-1 at random.


Reconstruct(a1,...,aT): Lagrange interpolation to find m=z0 


Need T points to reconstruct the polynomial. Given T-1 points, 
out of |F|T-1 polynomials passing through (0,m’) (for any m’) 
there is exactly one that passes through the T-1 points

Shamir Secret-Sharing



Lagrange Interpolation

Given T distinct points on a degree T-1 polynomial (univariate, over 
some field of more than T elements), reconstruct the entire 
polynomial (i.e., find all T coefficients)


T variables: z0,...,zT-1. 


T equations: 1.z0 + ci.z1 + ci2.z2 + ... ciT-1.zT-1 = ai


A linear system: Wz=s, where W is a T×T matrix with ith row, 
Wi= (1 ci ci2 ... ciT-1), ci’s distinct


W (called the Vandermonde matrix) is invertible over any field


z = W-1a



Error-Correcting Codes
In Shamir secret sharing, field elements z0,…,zT-1 were encoded into 
field elements (shares) a1,…,aN


Any subset of T shares could be used to reconstruct all zi (we 
were interested in reconstructing z0)


Reed-Solomon Code: Can “store” data redundantly in N disks, so that 
even if any N-T disks crash, can recover the data


Optimal rate: Can store T disks worth data in N disks and recover 
from N-T crashes (e.g., N=2T, can handle half the disks crashing)


Compare with mirroring disks: To handle half the disks crashing, 
only one disk worth of data can be stored


What if some disks could get silently corrupted (instead of crashing)?


Can reconstruct the original data if < (N-T)/2 disks corrupted


