
Wrap Up!
Lecture 25

Decision Trees & Branching Programs

Many Topics Not Covered!

Decision Trees
Another model of non-uniform computation

A full binary tree with each internal
node labelled with an “elementary”
boolean function of the input

Two children correspond to answers
true and false

Leaves are labelled with outputs

Evaluating a decision tree:

start from the root and at each node,
evaluate the node’s function on the input,
and go to the child corresponding to the
outcome

At the leaf produce the output

Q2

Q5

Q0

Q1

Q3 Q4 Q6

Decision Trees

Example: f(x1,x2,x3) = x1 ∧ (x2 ∨ x3)

How about x1 ⊕ … ⊕ xn ?

Every function f: {0,1}n → {0,1} has a trivial
decision tree with 2n leaves

At level i, use Qi(x1,…,xn) = xi

For each input (x1,…,xn) a separate leaf, which
is labelled with output f(x1,…,xn)

x2

x1

0

0

x3 1

1

Decision Trees
Another Example: Sorting

Input: (x1,…,xn), distinct

Output: Sorted list

Each Q is of the form (xi < xj)

Any sorting algorithm that uses “black-box”
comparisons defines such a decision tree

All n! possible orderings should
appear as leaves in this tree

#comparisons in the worst case
= depth of the tree

If depth d, need 2d ≥ #leaves ≥ n!

d ≥ log n! ≥ c⋅n log n

x1<x2

x2<x3 x2<x3

x1,x2,x3
x3,x2,x1 x1<x3 x1<x3

x2,x3,x1 x2,x1,x3 x3,x1,x2 x1,x3,x2

Branching Programs
A more compact version of a decision tree: Equivalent
nodes in the tree can be shared by their parents

Results in a DAG

E.g., x1 ⊕ … ⊕ xn has a width-2 branching program
with O(n) nodes

Permutation Branching Program: Levelled DAG of
width w at each level, with 0-edges mapping nodes at
a level bijectively to the nodes at the next level;
same for 1-edges

Exercise: Convert a BP to a circuit of similar size

Barrington’s Theorem: A depth d boolean circuit with
binary gates for f: {0,1}n → {0,1} can be turned into a
permutation branching program for f, with width 5,
and length ≤ 4d

x2

x1

0

x3

1

x2

x3

0 011

0 1

xn xn

0 011

:
:

Branching Programs
A more compact version of a decision tree: Equivalent
nodes in the tree can be shared by their parents

Results in a DAG

E.g., x1 ⊕ … ⊕ xn has a width-2 branching program
with O(n) nodes

Permutation Branching Program: Levelled DAG of
width w at each level, with 0-edges mapping nodes at
a level bijectively to the nodes at the next level;
same for 1-edges

Exercise: Convert a BP to a circuit of similar size

Barrington’s Theorem: A depth d boolean circuit with
binary gates for f: {0,1}n → {0,1} can be turned into a
permutation branching program for f, with width 5,
and length ≤ 4d

x2

x1

0

x3

1

x2

x3

0 011

0 1

xn xn

0 011

:
:

Topics covered

Basic tools for expressing ideas

Logic, Proofs,

Sets, Relations, Functions

Numbers and
patterns therein

Graphs

Recursive Def.
Generating Fun.

TreesCountingInduction

Bounding

big-O

Computation
Models

Topics not covered

Probability

But Could Have Been

Abstract
Algebra

Expectation & Variance. Conditional Probability.
Entropy and Mutual Information …

(Discrete) Groups, Rings and Fields. Polynomials.
Linear Algebra (over Finite Fields).

Codes Error Correcting Codes. Compression.

More Graphs

More
Combinatorics

Directed graphs, network flow, planar graphs, …

Matroids, Designs, Ramsey Theory,
Probabilistic Method, …

Topics not covered

Probability

But Could Have Been

Abstract
Algebra

Expectation & Variance. Conditional Probability.
Entropy and Mutual Information …

(Discrete) Groups, Rings and Fields. Polynomials.
Linear Algebra (over Finite Fields).

Codes Error Correcting Codes. Compression.

More Graphs

More
Combinatorics

Directed graphs, network flow, planar graphs, …

Matroids, Designs, Extremal Combinatorics,
Probabilistic Method, …

An illustrative
example from
cryptography:
Secret Sharing

A Game

A “dealer” and two “players” Alice and Bob (computationally
unbounded)

Dealer has a message, say two bits m1m2

She wants to “share” it among the two players so that
neither player by herself/himself learns anything about the
message, but together they can find it

Bad idea: Give m1 to Alice and m2 to Bob

Other ideas?

Sharing a bit
To share a bit m, Dealer picks a uniformly random bit b
and gives a := m⊕b to Alice and b to Bob

Together they can recover m as a⊕b

Each party by itself learns nothing about m: for each possible
value of m, its share has the same probability distribution

i.e., the vector of probabilities (Pr[a=0], Pr[a=1]) is the same
(namely, (0.5,0.5)) irrespective of the message. Same for
(Pr[b=0], Pr[b=1])

m = 0 ↦ (a,b) = (0,0) or (1,1) w/ probability 1/2 each

m = 1 ↦ (a,b) = (1,0) or (0,1) w/ probability 1/2 each

Sharing Larger Messages
To share a message m∈Zn, Dealer picks a uniformly random b∈Zn

and gives a := m-b (in Zn) to Alice and b to Bob

Together they can recover m as a+b (in Zn)

Each party by itself learns nothing about m: for each possible
value of m, its share has the same probability distribution

i.e., the vector of probabilities (Pr[a=0],…,Pr[a=n-1]) is the
same (namely, (1/n,…,1/n)) irrespective of the message. Same
for (Pr[b=0],…,Pr[b=n-1])

m ↦ (a,b) = (m,0), (m-1,1), (m-2,2), …, (m+1,n-1) w/ probability 1/n each

Sharing Larger Messages
Same idea works over any finite group

(Finite) Group: a (finite) set G along with a binary operation ∗, s.t.

Associative: ∀a,b,c ∈ G (a ∗ b) ∗ c = a ∗ (b ∗ c)

Identity Exists: ∃ e∈G s.t. ∀a ∈ G, a ∗ e = e ∗ a = a

Inverse Exists: ∀a ∈ G, ∃ a-1 ∈ G, s.t. a ∗ a-1 = a-1 ∗ a = e

Optionally, Commutative: ∀a,b ∈ G, a ∗ b = b ∗ a

E.g.: (Zn,+), (Z*n,×), (permutations of [n], composition),

(invertible square matrices, matrix multiplication), …

To secret share m, pick random a,b∈G conditioned on a∗b=m

i.e., pick random b and set a := m ∗ b-1

∀m∈G, each of a,b is uniformly random over G

∗ : G×G → G

Makes sense
as G is finite

Sharing Among N Parties
Extends to sharing a message among N parties, so that up to N-1
parties learn nothing about the message

To secret share m, pick random a1,…,aN ∈G conditioned on
a1∗…∗aN =m

e.g., pick random a2,…,aN and set a1 := m ∗ (a2 ∗ … ∗ aN)-1

For any set of N-1 parties — say all but ith party — the
combination of shares they obtain is distributed the same way
irrespective of what the message m is.

Fix m∈G. Consider any g1,…,gi-1,gi+1,…,gN ∈ G

Pr[(a1,…,ai-1,ai+1,…,aN) = (g1,…,gi-1,gi+1,…,gN)]
 = Pr[(a2,…,aN) = (g2,…,gN)] where gi is the unique value s.t
g1∗…∗gN = m. i.e., gi = (g1∗…∗gi-1)-1 ∗ m ∗ (gi+1∗…∗gN)-1

So, Pr[(a1,…,ai-1,ai+1,…,aN) = (g1,…,gi-1,gi+1,…,gN)] = 1/|G|N-1

Threshold Secret-Sharing

(N,T)-secret-sharing

Divide a message m into N shares a1,...,aN, such that

any T shares are enough to reconstruct the secret

up to T-1 shares should have no information about the
secret

So far: (N,N) secret-sharing
e.g., (a1,…,aT-1) has the same
distribution for every m in

the message space

Threshold Secret-Sharing
Construction: (N,2) secret-sharing (for N≥2)

Message-space = share-space = F, a finite field (e.g. integers mod prime)

Share(m): pick random r. Let ai = r⋅ci + m (for i=1,...,N < |F|)

Reconstruct(ai, aj): r = (ai-aj)/(ci-cj); m = ai - r⋅ci

Each ai by itself is uniformly distributed,
irrespective of m [Why?]

“Geometric” interpretation

Sharing picks a random “line” y = f(x),
such that f(0)=M. Shares ai = f(ci).

ai is independent of m: exactly one line passing
through (ci,ai) and (0,m’) for any secret m’

But can reconstruct the line from two points!
0 1 2 3 4 5 6

ci are n distinct,
non-zero field elements

Since ci-1 exists, exactly one
solution for r⋅ci+m=d, for

every value of d

Threshold Secret-Sharing

(N,T) secret-sharing in a (large enough) field F

Generalizing the geometric/algebraic view: instead of lines, use
polynomials

Share(m): Pick a random degree T-1 polynomial f(X), such that
f(0)=M. Shares are ai = f(ci).

Random polynomial with f(0)=m: z0 + z1X + z2X2 +...+ zT-1XT-1 by
picking z0=M and z1,...,zT-1 at random.

Reconstruct(a1,...,aT): Lagrange interpolation to find m=z0

Need T points to reconstruct the polynomial. Given T-1 points,
out of |F|T-1 polynomials passing through (0,m’) (for any m’)
there is exactly one that passes through the T-1 points

Shamir Secret-Sharing

Lagrange Interpolation

Given T distinct points on a degree T-1 polynomial (univariate, over
some field of more than T elements), reconstruct the entire
polynomial (i.e., find all T coefficients)

T variables: z0,...,zT-1.

T equations: 1.z0 + ci.z1 + ci2.z2 + ... ciT-1.zT-1 = ai

A linear system: Wz=s, where W is a T×T matrix with ith row,
Wi= (1 ci ci2 ... ciT-1), ci’s distinct

W (called the Vandermonde matrix) is invertible over any field

z = W-1a

Error-Correcting Codes
In Shamir secret sharing, field elements z0,…,zT-1 were encoded into
field elements (shares) a1,…,aN

Any subset of T shares could be used to reconstruct all zi (we
were interested in reconstructing z0)

Reed-Solomon Code: Can “store” data redundantly in N disks, so that
even if any N-T disks crash, can recover the data

Optimal rate: Can store T disks worth data in N disks and recover
from N-T crashes (e.g., N=2T, can handle half the disks crashing)

Compare with mirroring disks: To handle half the disks crashing,
only one disk worth of data can be stored

What if some disks could get silently corrupted (instead of crashing)?

Can reconstruct the original data if < (N-T)/2 disks corrupted

