In Action

IC

O)
O
-l

Proofs

Using Logic
@ Logic is used to deduce results in any (mathematically defined)

system

@ Typically a human endeavour (but can be automated if the
system is relatively simple)

@ Proof is a means to convince others (and oneself) that a
deduced result is correct

@ Verifying a proof is meant to be easy (automatable)

@ Coming up with a proof is typically a lot harder (not easy
to fully automate, but sometimes computers can help)

What are we proving?

® We are proving propositions
@ Often called Theorems, Lemmas, Claims, ...

@ Propositions may employ various predicates already specified as
Definitions

@ e.g. All positive even numbers are larger than 1

& vxeZ (Positive(x) A Even(x)) — Greater(x,1)

@ These predicates are specific to the system (here arithmetic).
The system will have its own “axioms” too (e.g., VX x+0=Xx)

@ For us, numbers (integers, rationals, reals) and other systems
like sets, graphs, functions, ...

Anatomy of a Proof

@ Clearly state the proposition p to prove (esp’ly, if rephrased)

@ Derive propositions po, ..., pn Where for each k, either pk is an
axiom or an already proven proposition in the system, or
(Po A Pt A «.. A Pk-1) — Pk holds (i.e., is True)

@ Usually one or two propositions < [verify!] if (piApj)—pk, then
so far would imply the next (- A Pi A o APj o) = Pk

@ An explanation should make it easy to verify the implication
(e.g., "By pj and pk-1, we obtain pk”)

@ pn should be the proposition to be proven
@ May use "sub-routines” (lemmas)

@ e.g., Derive po, ..., pk-1. Let px be a lemma proven separately.
Say, pk = pk-1 — p. Now, let pk.1 be p, as (pk-1Apk)—p holds.

Axioms,
definitions,
already proven

propositions - -

d
7/
V-
/
’)

— e

A Mental Picture

~
~

N
N
\
\
\

\ ‘

\
\

[' =0 o

-

:'l ' A2
(ST o
\\\\ ’” ‘ Q‘L(/

/
/
7/
7
-
-

= indicates derivation from
all statements proven so far

Example

@ Our system here is that of integers (comes with the set of
integers Z and operations like +, -, ¥, /, exponentiation...)

@ We will not attempt to formally define this system!

@ Definition: An integer x is said to be odd if there is an
integer y s.t. x=2y+1]

“if” used by convention;
@ vxel Odd(x) < 3IyeZ (x=2y+1) actually means "iff”

@ Proposition: If x is an odd integer, so is x2

@ vxed 0Odd(x) — Odd(x2)

Example

® Def: vxeZ Odd(x) « 3Iyed (x = 2y+1)
@ Proposition: vxeZ Odd(x) — Odd(x2)

@ Proof: (should be written in more readable English)
® Let x be an arbitrary element of Z. @ Variable x introduced.

@ Suppose Odd(x). Then, we need to show Odd(x2).
@ By def., 3yeZ x=2y+1. So let x=2a+1 where acZ.

@ Then, x2 = (2a+1)2 = 4a2 + 4a + 1
= 2(2a2+2a) + 1.
@ IweZ (2a2+2a)=w.

@ So let 2a2+2a=b, where be#

@ Hence, x2 = 2b+1
@ Then, by definition, Odd(x2).

® Hence for every x, Odd(x) — Odd(x2). QED.

Proving vs. Verifying

@ Proofs should be easy to verify. All the cleverness goes into
finding/writing the proof, not reading/verifying it!

“Pvs.NP” (informally) :
P = class of problems for which finding a proof is computationally easy.
NP = class of problems for which verifying a proof is computationally easy.
We believe that many problems in NP are not in P
(but we haven't been able to prove it yet!)

@ Multiple approaches:

@ Direct deduction; Rewriting the proposition, e.g., as
contrapositive; Proof by contradiction; Proof by giving a
(counter)example, when applicable; Mathematical Induction.

