

Proofs: Logic in Action

Using Logic

Substance Series Logic is used to deduce results in any (mathematically defined) system

Typically a human endeavour (but can be automated if the system is relatively simple)

Proof is a means to convince others (and oneself) that a deduced result is correct

Verifying a proof is meant to be easy (automatable)

Coming up with a proof is typically a lot harder (not easy to fully automate, but sometimes computers can help)

What are we proving?

We are proving propositions Often called Theorems, Lemmas, Claims, ... Propositions may employ various predicates already specified as Definitions

In e.g. All positive even numbers are larger than 1
Image: $\forall x \in \mathbb{Z}$ (<u>Positive(x) \land Even(x)</u>) \rightarrow <u>Greater(x,1)</u>

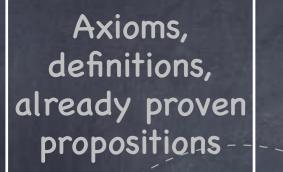
 These predicates are specific to the system (here arithmetic). The system will have its own "axioms" too (e.g., ∀x x+0=x)
 For us, numbers (integers, rationals, reals) and other systems like sets, graphs, functions, ...

Anatomy of a Proof

Clearly state the proposition p to prove (esp'ly, if rephrased) Our Derive propositions p_0 , ..., p_n where for each k, either p_k is an axiom or an already proven proposition in the system, or $(p_0 \land p_1 \land \dots \land p_{k-1}) \rightarrow p_k$ holds (i.e., is True)

So far would imply the next $\begin{cases} [verify!] & \text{if } (p_i \land p_j) \rightarrow p_k, \text{ then} \\ (... \land P_i \land ... \land P_j ...) \rightarrow P_k \end{cases}$

- An explanation should make it easy to verify the implication (e.g., "By p_j and p_{k-1} , we obtain p_k ")
- \bigcirc p_n should be the proposition to be proven
- May use "sub-routines" (lemmas)
 - If e.g., Derive p_0 , ..., p_{k-1} . Let p_k be a lemma proven separately. Say, $p_k \equiv p_{k-1} \rightarrow p$. Now, let p_{k+1} be p, as $(p_{k-1} \land p_k) \rightarrow p$ holds.



Po

P1

P2

A Mental Picture

 \Rightarrow indicates derivation from all statements proven so far

QED

Example

Ø Our system here is that of integers (comes with the set of integers ℤ and operations like +, -, *, /, exponentiation...)

We will not attempt to formally define this system!

Definition: An integer x is said to be odd if there is an integer y s.t. x=2y+1

"if" used by convention;

actually means "iff"

 $\forall x \in \mathbb{Z} \ Odd(x) \leftrightarrow \exists y \in \mathbb{Z} \ (x=2y+1)$

Proposition: If x is an odd integer, so is x^2

Example

- Ø Def: ∀x∈ℤ Odd(x) ↔ ∃y∈ℤ (x = 2y+1)
- Orbition: $\forall x \in \mathbb{Z}$ Odd(x) → Odd(x²)
- Proof: (should be written in more readable English)
 Let x be an arbitrary element of Z. Variable x introduced.
 - Suppose Odd(x). Then, we need to show $Odd(x^2)$.
 - By def., $\exists y \in \mathbb{Z}$ x=2y+1. So let x=2a+1 where a∈ \mathbb{Z} . Variable a

$$= 2(2a^2+2a) + 1.$$

 \Im $\exists w \in \mathbb{Z}$ (2a²+2a)=w.

- From arithmetic. From arithmetic.
- So let 2a²+2a=b, where b∈ \mathbb{Z} Variable b.
- Hence, $x^2 = 2b+1$
- Then, by definition, $Odd(x^2)$.
- Hence for every x, Odd(x) \rightarrow Odd(x²). QED.

Proving vs. Verifying

Proofs should be easy to verify. All the cleverness goes into finding/writing the proof, not reading/verifying it!

"P vs. NP" (informally):

 P = class of problems for which <u>finding</u> a proof is computationally easy.
 NP = class of problems for which <u>verifying</u> a proof is computationally easy.
 We believe that many problems in NP are not in P (but we haven't been able to prove it yet!)

Multiple approaches:

Direct deduction; Rewriting the proposition, e.g., as contrapositive; Proof by contradiction; Proof by giving a (counter)example, when applicable; Mathematical Induction.