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Template for p → q
To prove p → q:

May set p0 as p (even though we don’t know if p is True), 
and proceed to prove q

Proof starts with “Suppose p.”

Why is this a proof of p → q?

If p is True, the above is a valid proof that q holds. 
And if q holds, p → q holds.

If p is False, the above proof is not valid. But we already 
have that p → q is vacuously true.

In either case p → q holds

Or, could rewrite the proof as (p→p1) ⇒ (p→p2) ⇒…⇒ (p→q)



Rephrasing

Often it is helpful to first rewrite the proposition into an 
equivalent proposition and prove that. 

Should clearly state this if you are doing this.

An important example: contrapositive

p → q ≡ ¬q → ¬p

Both equivalent to ¬p ∨ q

porig ↔ pequiv 
p0 ⇒ p1 ⇒ … ⇒ pequiv ⇒ porig



Contrapositive
p → q ≡ ¬q → ¬p

An example:

Proposition:  ∀x,y∈Z+  x⋅y > 25 → (x≥6) ∨ (y≥6)

Enough to prove that: ∀x,y∈Z+  (x<6) ∧ (y<6) → x⋅y ≤ 25

Another example:

If function f is “hard” then crypto scheme S is “secure” 
≡ If crypto scheme S is not “secure,” then function f is not 

“hard”

To prove the former, we can instead show how to transform 
any attack on S into an efficient algorithm for f

Positive integers



Rephrasing
Often it is helpful to first rewrite the proposition into an 
equivalent proposition and prove that. 

Should clearly state this if you are doing this.

An important example: contrapositive

p → q ≡ ¬q → ¬p

Another instance: proof by contradiction

p ≡ ¬p → False

So, to prove p, enough to show that ¬p → False.

porig ↔ pequiv 
p0 ⇒ p1 ⇒ … ⇒ pequiv ⇒ porig



Contradiction

To prove p, enough to show that ¬p → False.

Recall: To prove ¬p → False, we can start by assuming ¬p

Can start the proof directly by saying “Suppose for the 
sake of contradiction, ¬p” (instead of saying we shall prove 
¬p → False)

pn is simply “False”

E.g., we may have ¬p ⇒ … ⇒ q … ⇒ ¬q ⇒ False

“But that is a contradiction! Hence p holds.”

⇒ False



Example
Claim: There’s a village barber who gives haircuts to exactly 
those in the village who don’t cut their own hair

Proposition: The claim is false

Proposition, formally: ¬(∃B∀x  ¬cut-hair(x,x) ⟷ cut-hair(B,x))

Suppose for the sake of contradiction,  
∃B ∀x  ¬cut-hair(x,x) ⟷ cut-hair(B,x)

(∃B ∀x  ¬cut-hair(x,x) ⟷ cut-hair(B,x) )  

           ⇒ (∃B ¬cut-hair(B,B) ⟷ cut-hair(B,B) ) 

           ⇒ ∃B False  

           ⇒ False, which is a contradiction!



Example
For every pair of distinct primes p,q, logp(q) is irrational

(Will use basic facts about log and primes from arithmetic.)

Suppose for the sake of contradiction that there exists a pair 
of distinct primes (p,q), s.t. logp(q) is rational.

⇒ logp(q)  = a/b for positive integers a,b.  

(Note, since q>1, logp(q) > 0.)

⇒  pa/b = q  ⇒ pa = qb.

But p, q are distinct primes. Thus pa and qb are two distinct 
prime factorisations of the same integer!

Contradicts the Fundamental Theorem of Arithmetic!

Will prove later



Reduction
Often it is helpful to break up the proof into two parts

To prove p, show r → p and separately show r

The proof r → p is said to “reduce” the task of proving p to 

the task of proving r

Many sophisticated proofs are carried out over several works, 
each one reducing it to a simpler problem 

Proving r → p leaves open the possibility that ¬p will be 

proven later, which will yield a proof for ¬r instead

r ⇒ … ⇒ pr’ ⇒ … ⇒p0 ⇒ … ⇒



Template for ∃x P(x)

To prove ∃x P(x)

Demonstrate a particular value of x s.t. P(x) holds

e.g. to prove ∃x P(x) → Q(x)

find an x s.t. P(x) → Q(x) holds

if you can find an x s.t. P(x) is false, done!

or, you can find an x s.t. Q(x) is true, done!

(May not be easy to show either, but still may be able to 
find an x and argue ¬P(x) ∨ Q(x) )

(May not be able to find one, but still show one exists!)



Template for ¬(∀x P(x))

To prove ¬(∀x P(x))

≡ ∃x ¬P(x)

Demonstrate a particular value of x s.t. P(x) doesn’t hold

Proof by counterexample

e.g. to disprove the claim that all odd numbers > 1 are prime

i.e., to prove ¬(∀x∊S, Prime(x)) where S is the set of all odd 

numbers > 1

Enough to show that ∃x∊S ¬Prime(x)

take x = 9 = 3×3 (or, say, x = 207 = 9×23)



Template for ∀x P(x)
To prove ∀x P(x)

Let x be an arbitrary element (in the domain of the 
predicate P)

Now prove P(x) holds

x is arbitrary: the proof applies to every x. Hence ∀x P(x)

e.g., To prove ∀x Q(x) → R(x)

To prove Q(x) → R(x) for an arbitrary x

Assume Q(x) holds, i.e., set p0 to be Q(x). Then prove R(x) 
using a sequence, p0 ⇒ p1 ⇒ … ⇒ pn, where pn is R(x)

Caution: You are not proving (∀x Q(x)) → (∀x R(x)). So to 

prove R(x), may only assume Q(x), and not Q(x’) for x’ ≠ x.



Cases
Often it is helpful to break a proposition into various 
“cases” and prove them one by one

e.g., To prove q, prove the following

c1 ∨ c2 ∨ c3

c1 → q

c2 → q

c3 → q

⇒ (c1 ∨ c2 ∨ c3) → q

⇒ q c ⋀ (c → q) ⇒ q

(c1→q) ∧ (c2→q) ∧ (c3→q) 

≡ 

( c1 ∨ c2 ∨ c3 ) → q



Cases
Often it is helpful to break a proposition into various 
“cases” and prove them one by one

e.g., To prove p → q, prove the following

p → c1 ∨ c2 ∨ c3

c1 → q

c2 → q

c3 → q

⇒ (c1 ∨ c2 ∨ c3) → q

⇒ p → q ( (p→c) ∧ (c→q) ) ⇒ (p→q)

(c1→q) ∧ (c2→q) ∧ (c3→q) 

≡ 

( c1 ∨ c2 ∨ c3 ) → q



Cases: Example
Proving equivalences of logical formulas

To prove:  p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)

∀p,q,r ∈ {T,F}   (p ∨ (q ∧ r)) ⟷ ((p ∨ q) ∧ (p ∨ r))

Two cases: p ∨ ¬p

Case p:   p ∨ (q ∧ r) ≡ T 

                (p ∨ q) ∧ (p ∨ r) ≡ T

Case ¬p:   p ∨ (q ∧ r) ≡ (q ∧ r) 

                (p ∨ q) ∧ (p ∨ r) ≡ (q ∧ r)



Cases: Example
∀a,b,c,d ∈ Z+  If a2+b2+c2 = d2, then d is even iff a,b,c are all 

even.

Suppose a,b,c,d ∈ Z+  s.t. a2+b2+c2 = d2. Will show d is even iff 

a,b,c are all even.

4 cases based on number of a,b,c which are even. 

Case 1: a,b,c all even ⇒ d2 = a2+b2+c2 even ⇒ d even.

Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a 
be odd and b, c even. i.e., a=2x+1, b=2y, c=2z for some x,y,z.   
Then, d2 = a2+b2+c2 = 2(2x2+2x+2y2+2z2) + 1 ⇒ d2 odd ⇒ d odd.

Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z. 
Then, d2=a2+b2+c2 = 4(x2+x+y2+y+4z2) + 2. Contradiction! (why?)

Case 4: a,b,c all odd ⇒ d2 = a2+b2+c2 = 4w+3 ⇒ d odd.


