

# Some Proof Templates

Axioms, definitions, already proven propositions --

### A Mental Picture



### Template for p -> q

- $\odot$  To prove  $p \rightarrow q$ :
  - May set  $p_0$  as p (even though we don't know if p is True), and proceed to prove q
    - Proof starts with "Suppose p."
  - $\bullet$  Why is this a proof of  $p \rightarrow q$ ?
    - If p is True, the above is a valid proof that q holds. And if q holds,  $p \rightarrow q$  holds.
    - If p is False, the above proof is not valid. But we already have that p → q is vacuously true.
  - Or, could rewrite the proof as  $(p → p_1) ⇒ (p → p_2) ⇒ ... ⇒ (p → q)$

# Rephrasing

- Often it is helpful to first rewrite the proposition into an
  - equivalent proposition and prove that.  $\begin{cases} p_{orig} \leftrightarrow p_{equiv} \\ p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_{equiv} \Rightarrow p_{orig} \end{cases}$
- Should clearly state this if you are doing this.
- An important example: contrapositive
  - - Both equivalent to ¬p ∨ q

# Contrapositive

- An example:

Positive integers

- Proposition:  $\forall x,y \in \mathbb{Z}^+$   $x \cdot y > 25$  →  $(x \ge 6)$  ∨  $(y \ge 6)$
- Another example:
  - If function f is "hard" then crypto scheme S is "secure"
    If crypto scheme S is not "secure," then function f is not "hard"
  - To prove the former, we can instead show how to transform any attack on S into an efficient algorithm for f

# Rephrasing

- Often it is helpful to first rewrite the proposition into an equivalent proposition and prove that.  $\sqrt{p_{\text{orig}} \leftrightarrow p_{\text{equiv}} \atop p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_{\text{equiv}} \Rightarrow p_{\text{orig}} }$
- Should clearly state this if you are doing this.
- An important example: <u>contrapositive</u>
- Another instance: proof by contradiction
  - $p = \neg p \rightarrow False$
  - $\odot$  So, to prove p, enough to show that  $\neg p \rightarrow False$ .

#### Contradiction

- $\bullet$  To prove p, enough to show that  $\neg p \rightarrow False$ .
- Recall: To prove ¬p → False, we can start by assuming ¬p
  - © Can start the proof directly by saying "Suppose for the sake of contradiction,  $\neg p$ " (instead of saying we shall prove  $\neg p \rightarrow False$ )
  - p<sub>n</sub> is simply "False"
    - **3** E.g., we may have  $\neg p \Rightarrow ... \Rightarrow q ... \Rightarrow \neg q \Rightarrow False$ 
      - \*But that is a contradiction! Hence p holds."

### Example

- © Claim: There's a village barber who gives haircuts to exactly those in the village who don't cut their own hair
- Proposition: The claim is false
- @ Proposition, formally:  $\neg(\exists B \forall x \neg cut-hair(x,x) \longleftrightarrow cut-hair(B,x))$ 
  - Suppose for the sake of contradiction,  $\exists B \ \forall x \ \neg cut-hair(x,x) \longleftrightarrow cut-hair(B,x)$
  - - $\Rightarrow$  ( $\exists B \neg cut-hair(B,B) \longleftrightarrow cut-hair(B,B))$
    - ⇒ ∃B False
    - ⇒ False, which is a contradiction!

### Example

- $\circ$  For every pair of distinct primes p,q,  $log_p(q)$  is irrational
- (Will use basic facts about log and primes from arithmetic.)
- Suppose for the sake of contradiction that there exists a pair of distinct primes (p,q), s.t.  $log_p(q)$  is rational.
- $\Rightarrow \log_P(q) = a/b$  for positive integers a,b. (Note, since q>1,  $\log_P(q) > 0$ .)
- But p, q are distinct primes. Thus pa and qb are two distinct prime factorisations of the same integer!
- Contradicts the Fundamental Theorem of Arithmetic!

#### Reduction

- Often it is helpful to break up the proof into two parts
- $\bullet$  To prove p, show  $r \rightarrow p$  and separately show r
  - The proof  $r \to p$  is said to "reduce" the task of proving p to the task of proving r
  - Many sophisticated proofs are carried out over several works, each one reducing it to a simpler problem

$$p_0 \Rightarrow ... \Rightarrow r' \Rightarrow ... \Rightarrow r \Rightarrow ... \Rightarrow p$$

@ Proving  $r \to p$  leaves open the possibility that  $\neg p$  will be proven later, which will yield a proof for  $\neg r$  instead

### Template for $\exists x P(x)$

- To prove  $\exists x P(x)$ 
  - Demonstrate a particular value of x s.t. P(x) holds
- $\odot$  e.g. to prove  $\exists x P(x) \rightarrow Q(x)$ 
  - - if you can find an x s.t. P(x) is false, done!
    - or, you can find an x s.t. Q(x) is true, done!
  - (May not be able to find one, but still show one exists!)

# Template for $\neg(\forall x P(x))$

- To prove  $\neg(\forall x P(x))$ 

  - Demonstrate a particular value of x s.t. P(x) doesn't hold
  - Proof by counterexample
- @ e.g. to disprove the claim that all odd numbers > 1 are prime
  - i.e., to prove ¬(∀x∈S, Prime(x)) where S is the set of all odd numbers > 1
  - $\odot$  Enough to show that  $\exists x \in S \neg Prime(x)$

### Template for $\forall x P(x)$

- $\odot$  To prove  $\forall x P(x)$ 
  - Let x be an arbitrary element (in the domain of the predicate P)
  - Now prove P(x) holds
- $\odot$  e.g., To prove  $\forall x \ Q(x) \rightarrow R(x)$
- To prove  $Q(x) \rightarrow R(x)$  for an arbitrary x
  - Assume Q(x) holds, i.e., set  $p_0$  to be Q(x). Then prove R(x) using a sequence,  $p_0 \Rightarrow p_1 \Rightarrow ... \Rightarrow p_n$ , where  $p_n$  is R(x)
  - © Caution: You are not proving  $(\forall x \ Q(x)) \rightarrow (\forall x \ R(x))$ . So to prove R(x), may only assume Q(x), and not Q(x') for  $x' \neq x$ .

#### Cases

- Often it is helpful to break a proposition into various "cases" and prove them one by one
- @ e.g., To prove q, prove the following

$$\odot$$
 C<sub>1</sub>  $\vee$  C<sub>2</sub>  $\vee$  C<sub>3</sub>

$$oldsymbol{o}$$
  $c_1 \rightarrow q$ 

$$oldsymbol{0}$$
  $c_2 \rightarrow q$ 

$$\Rightarrow (c_1 \lor c_2 \lor c_3) \rightarrow q$$

$$oldsymbol{0} \Rightarrow q$$

$$(c_1 \rightarrow q) \land (c_2 \rightarrow q) \land (c_3 \rightarrow q)$$

$$\equiv$$
 $(c_1 \lor c_2 \lor c_3) \rightarrow q$ 

$$c \wedge (c \rightarrow q) \Rightarrow q$$

#### Cases

- Often it is helpful to break a proposition into various "cases" and prove them one by one
- $\odot$  e.g., To prove  $p \rightarrow q$ , prove the following

$$oldsymbol{o}$$
  $c_1 \rightarrow q$ 

$$c_2 \rightarrow q$$

$$\Rightarrow (c_1 \lor c_2 \lor c_3) \rightarrow q$$

$$(c_1 \rightarrow q) \land (c_2 \rightarrow q) \land (c_3 \rightarrow q)$$

$$\equiv$$
 $(c_1 \lor c_2 \lor c_3) \rightarrow q$ 

( 
$$(p\rightarrow c) \land (c\rightarrow q)) \Rightarrow (p\rightarrow q)$$

### Cases: Example

- Proving equivalences of logical formulas
- To prove:  $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- Case p:  $p \lor (q \land r) \equiv T$  $(p \lor q) \land (p \lor r) \equiv T$
- Case  $\neg p$ :  $p \lor (q \land r) \equiv (q \land r)$  $(p \lor q) \land (p \lor r) \equiv (q \land r)$

### Cases: Example

- $\lozenge$   $\forall$  a,b,c,d  $\in \mathbb{Z}^+$  If  $a^2+b^2+c^2=d^2$ , then d is even iff a,b,c are all even.
- Suppose a,b,c,d  $\in \mathbb{Z}^+$  s.t.  $a^2+b^2+c^2=d^2$ . Will show d is even iff a,b,c are all even.
- 4 cases based on number of a,b,c which are even.
- Tase 1: a,b,c all even  $\Rightarrow$  d<sup>2</sup> = a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup> even  $\Rightarrow$  d even.
- © Case 2: Of a,b,c, 2 even, 1 odd. Without loss of generality, let a be odd and b, c even. i.e., a=2x+1, b=2y, c=2z for some x,y,z. Then,  $d^2 = a^2+b^2+c^2 = 2(2x^2+2x+2y^2+2z^2) + 1 \Rightarrow d^2$  odd  $\Rightarrow$  d odd.
- © Case 3: Of a,b,c, 1 even, 2 odd. W.l.o.g, a=2x+1,b=2y+1,c=2z. Then,  $d^2=a^2+b^2+c^2=4(x^2+x+y^2+y+4z^2)+2$ . Contradiction! (why?)
- Tase 4: a,b,c all odd  $\Rightarrow$  d<sup>2</sup> = a<sup>2</sup>+b<sup>2</sup>+c<sup>2</sup> = 4w+3  $\Rightarrow$  d odd.