

Mathematical Induction

Proof by Programming

The Fable of the Proof Deity! (OK, 1 made it up:))

- You have been imprisoned in a dungeon. The guard gives you a predicate P and tells you that the next day you will be asked to produce the proof for P(n) for some n∈ℤ+. If you can, you'll be let free!
- You pray to Seshat, the deity of wisdom.
- You tell her what P is. She thinks for a bit and says, indeed, ∀n∈ℤ+ P(n). But she wouldn't give you a proof.
- You plead with her. She relents a bit and tells you:
 If you give me the proof for P(k) for a k, and give
 me a gold coin, I will give you the proof for P(k+1).
- You are hopeful, because you have worked out the proof for P(1) (and you're very rich) ...

The Fable of the Proof Deity! (OK, 1 made it up:))

Proof of

Proof o.

- The next morning, the guard asks you for a proof of P(207)
- You invoke Seshat, and submit to her an envelope with your proof for P(1) and a gold coin
 - She returns an envelope with the proof for P(2)
 - You give that envelope back to her, with another gold coin
 - She gives you an envelope with the proof for P(3)
 - and after spending 206 coins, you get an envelope with the proof of P(207), which you submit to the guard
- After a while the guard returns with the envelope and announces: Congratulations! The court mathematicians have verified your proof! You are free to leave! (Yay!)

The Fable of the Proof Deity! (OK, 1 made it up:))

Proof of

- After getting out of the dungeon, you have the envelope with the proof of P(207) with you. You open it.
- The first page is the proof of P(1) you gave.
- The second page has a beautiful proof for a Lemma: $\forall k \in \mathbb{Z}^+ P(k) \rightarrow P(k+1).$
- The third page has: Since P(1) and, by Lemma, P(1) \rightarrow P(2), we have P(2). Since P(2) and, by Lemma, P(2) \rightarrow P(3), we have P(3).

Since P(206) and, by Lemma, P(206) \rightarrow P(207), we have P(207). QED

You feel a bit silly for having paid 206 gold coins. But at least, you learned something...

"Proof by programming": This is a program that takes n as input and produces a proof for P(n)

An axiom in our system for Z+

Ø First, we prove P(1) and ∀k∈ℤ+ P(k)→P(k+1)

Weak The Principle of

To prove $\forall n \in \mathbb{Z}^+$ P(n):

Mathematical Induction

For any n, we can run this procedure to generate a proof for P(n), and hence for any n, P(n) holds.

∀n∈**ℤ**+

P(n)

 $\begin{array}{c|c} P(1) & P(1) \rightarrow P(2) \\ P(2) & P(2) \rightarrow P(3) \\ P(3) & P(3) \rightarrow P(4) \\ P(4) & P(4) \rightarrow P(5) \\ P(5) & P(5) \rightarrow P(6) \\ \vdots & & \vdots \end{array}$

Induction step

To prove $\forall n \in \mathbb{Z}^+$ P(n): Base case

Induction hypothesis

Ø First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ P(k)→P(k+1)

Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)

Induction step

To prove $\forall n \in \mathbb{Z}^+$ P(n): Base case
 Base case
 Base case
 Compared to the prove determined on the prove determined on the provement of the provement of

Induction hypothesis

P(k)

Ø First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ P(k)→P(k+1)

Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)

Conventional phrasing while proving a claim written using a variable n
 We prove the claim by induction on n.

Base case: First we prove that the claim holds for n = 1.

We shall prove that for any k≥1, if the claim holds for n=k then it holds for n=k+1. < P(k+1)</p>

Ø Fix a k≥1. Suppose the claim holds for n=k. ...

Induction step

To prove $\forall n \in \mathbb{Z}^+$ P(n): Base case
 Base case

Induction hypothesis

Ø First, we prove P(1) and $\forall k \in \mathbb{Z}^+$ P(k)→P(k+1)

Then by (weak) mathematical induction, $\forall n \in \mathbb{Z}^+$ P(n)

Base case may cover several values of the induction variable
e.g., Base cases: P(1), P(2), P(3), and induction step: For all k≥3, P(k) → P(k+1)
Claim may use a different range for n
e.g., to prove ∀n≥0 P(n) we may use Base case: P(0), and induction step: For all k≥0, we prove that P(k) → P(k+1) plq : p divides q i.e., ∃r s.t. q=pr

Example

Base case: n=0. 3|0.

Induction step: For all integers k≥0 <u>Induction hypothesis</u>: Suppose true for n=k. i.e., k³-k = 3m <u>To prove</u>: Then, true for n=k+1. i.e., 3 | (k+1)³-(k+1)

The non-inductive proof: n³-n = n(n²-1) = (n-1)n(n+1).
3 | (n-1)n(n+1) since one of 3 consecutive integers is a multiple of 3

To prove ∀n∈ℤ+ P(n):
First, we prove P(1) and ∀k∈ℤ+ P(k)→P(k+1)
Then by (weak) mathematical induction, ∀n∈ℤ+ P(n)

In disguise

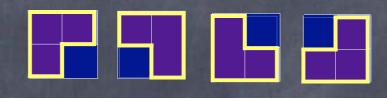
Well Ordering Principle Every non-empty subset of Z+ has a minimum element. (Can be used instead of Principle of Mathematical Induction)

To prove ∀n∈ℤ+ P(n):
Prove P(1) and ∀k∈ℤ+ ¬P(k+1) → ¬P(k)
For the sake of contradiction, suppose ¬ (∀n∈ℤ+ P(n)).
Let k' be the smallest n∈ℤ+ s.t. ¬P(n). k' ≠ 1 (since P(1)).
Let k = k'-1. Then, k ∈ ℤ+ and ¬P(k+1). Then, ¬P(k).
Contradicts the fact that k' is the smallest n∈ℤ+ s.t. ¬P(n).

Tromino Tiling

L-trominoes can be used to tile a "punctured" 2ⁿ×2ⁿ grid (punctured = one cell removed), for all positive integers n

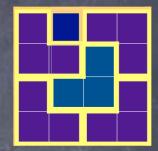
Base case: n=1

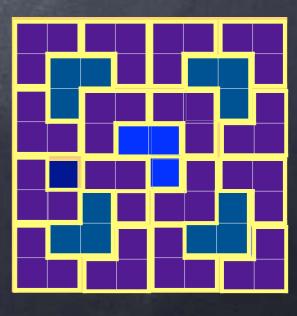


 Inductive step: For all integers k≥1 : <u>Hypothesis</u>: suppose, true for n=k <u>To prove</u>: then, true for n=k+1

Idea: can partition the 2^{k+1}×2^{k+1} punctured grid into four 2^k×2^k punctured grids, plus a tromino. Each of these can be tiled using trominoes (by inductive hypothesis).

Actually gives a (recursive) algorithm for tiling





Structured Problems

P(n) may refer to an object or structure of "size" n (e.g., a punctured grid of size 2ⁿ×2ⁿ)

- To prove $P(k) \rightarrow P(k+1)$
 - Take the object of size k+1

Common mistake: <u>Going in the opposite direction!</u> Not enough to reason about (k+1)-sized objects derived from k-sized objects

- Derive (one or more) objects of size k
- Appeal to the induction hypothesis P(k), to draw conclusions about the smaller objects
- Out them back together into the original object, and draw a conclusion about the original object, namely, P(k+1)

Strong Induction

Induction hypothesis: $\forall n \leq k P(n)$

 To prove $\forall n \in \mathbb{Z}^+$ P(n): we prove P(1) (as before) and that
 $\forall k \in \mathbb{Z}^+$ (P(1) \land P(2) $\land \dots \land$ P(k)) \rightarrow P(k+1) Mathematical Induction $P(1) \rightarrow P(2)$ → P(1) The fact that for any n, P(2) $P(1) \land P(2) \rightarrow P(3)$ we can run this procedure to $P(1) \land .. \land P(3) \rightarrow P(4)$ P(3) generate a proof for P(n), and hence for any n, P(n) holds. $P(1) \land .. \land P(4) \rightarrow P(5)$ P(4) $P(1) \land .. \land P(5) \rightarrow P(6)$ P(5) $\forall n \in \mathbb{Z}^+ P(n)$

Same as weak induction for $\forall n \ Q(n)$, where $Q(n) \triangleq \forall m \in [1,n] P(m)$