
Mathematical Induction

Euclid (300 BC)

Examples



Strong Induction

P(1) P(1) → P(2)

P(1) ∧ P(2) → P(3)

P(1) ∧ .. ∧ P(3) → P(4)

P(1) ∧ .. ∧ P(4) → P(5)

P(1) ∧ .. ∧ P(5) → P(6)

:
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Mathematical Induction
The fact that for any n, 

we can run this procedure to 
generate a proof for P(n), and 
hence for any n, P(n) holds.

To prove ∀n∈Z+  P(n): we prove P(1) (as before) and that 

 ∀k∈Z+  (P(1) ∧ P(2) ∧ ... ∧ P(k))→P(k+1)

∀n∈Z+  P(n)

Induction hypothesis: ∀n≤k P(n)



Postage Stamps
Claim: Every amount of postage that is at least ₹12 can be made 
from ₹4 and ₹5 stamps

i.e., ∀n∈Z+  n≥12 → ∃a,b∈N  n=4a+5b

Base cases: n=1,..,11 (vacuously true) and n = 12 = 4⋅3 + 5⋅0, n = 

13 = 4⋅2 + 5⋅1, n = 14 = 4⋅1 + 5⋅2, n = 15 = 4⋅0 + 5⋅3.

Induction step: For all integers k≥16 : 
   Strong induction hypothesis:  Claim holds for all n s.t. 1 ≤ n < k 
   To prove:  Holds for n=k

k≥16 → k-4 ≥ 12. 

So by induction hypothesis, k-4=4a+5b for some a,b∈N.

So k = 4(a+1) + 5b.



Prime Factorization
Every positive integer n ≥ 2 has a prime factorization 
i.e, n = p1⋅...⋅pt (for some t≥1) where all pi are prime

Base case: n=2. (t=1, p1=2).

Induction step: 
  (Strong) induction hypothesis: for all n≤k, ∃p1,...,pt, s.t. n= p1⋅...⋅pt 

  To prove: ∃q1,...,qu (also primes) s.t. k+1= q1⋅...⋅qu

Case k+1 is prime: then k+1=q1 for prime q1

Case k+1 is not prime: ∃a∈Z+ s.t. 2≤a≤k and a|k+1 (def. prime). 

i.e., ∃a,b∈Z+ s.t. 2≤a,b≤k and k+1=a.b (def. divides; a≥2→a.b > b)

Now, by (strong) induction hypothesis, both a & b have prime 
factorizations: a=p1...ps, b=r1...rt. 
Then k+1=q1...qu, where u=s+t, qi = pi for i=1 to s and qi = ri-s, for 
i=s+1 to s+t.

Need some 
more work to 
show unique 
factorization. 

 
p prime ∧ p|ab  

→ p|a ∨ p|b 



Claim: Every non-empty set of integers has either all elements 
even or all elements odd. (Of course, false!)

“Proof” (bogus): By induction on the size of the set.

Base case: |S|=1. The only element in S is either even or odd ✓

Induction step: For all k > 1,  
Induction hypothesis: suppose all non-empty S with |S| = k, has 
either all elements even or all elements odd. 
To prove: then, it holds for all S with |S|=k+1.

Let S = {a,b} ∪ S’, where |S’|=k-1. (Note: S’ is not empty)

By IH, S’∪{a} has all even or all odd. Say, all even. Then S’ is all 

even. Now, S’∪{b} is also all even or all odd. Since S’ not empty, 

it is all even. Thus S = S’ ∪ {a,b} is all even. QED.

Be careful about ranges!

Bug: Induction hypothesis cannot be 
bootstrapped from the base case



Claim: Every non-empty set of integers has either all elements 
even or all elements odd. (Of course, false!)

“Proof” (bogus): By induction on the size of the set.

Be careful about ranges!

P(1)

P(2) → P(3)

P(3) → P(4)

P(4) → P(5)

P(5) → P(6)

:

We proved P(1) and ∀k>1  P(k)→P(k+1)



Nim
Alice and Bob take turns removing matchsticks from two piles
Initially both piles have equal number of matchsticks
At every turn, a player must choose one pile and remove one 
or more matchsticks from that pile
Goal: be the person to remove the last matchstick

Claim: In Nim, the second player has a winning strategy

(Aside: in every finitely-terminating two player game without 
draws, one of the players has a winning strategy)

Claim: The following is a winning strategy for the second 
player: keep the piles matched at the end of your turn



Nim

Induction variable: n = number of matchsticks on each pile at the 
beginning of the game. 

Base case: n=1. Alice must remove one. Next, Bob wins. ✔ 

Induction step: for all integers k≥1 
  Induction hypothesis: when starting with n≤k, Bob always wins 
  To prove: when starting with n=k+1, Bob always wins

Case 1: Alice removes all k+1 from one pile. Next, Bob wins.

Case 2: Alice removes j, 1≤j≤k from one pile. After Bob’s move  
k+1-j left in each pile. By induction hypothesis, Bob will win from 
here.

Claim: The following is a winning strategy for the second 
player: keep the piles matched at the end of your turn

strong


