Numb3rs

$$\mathbb{Z} = \{ ..., -2, -1, 0, 1, 2, ... \}$$
 $\mathbb{N} = \{ 0, 1, 2, ... \}$
 $\mathbb{Z}^+ = \{ 1, 2, ... \}$

& addition, subtraction and multiplication

Quotient & Remainder

Divisibility

- Definition: For n,d∈ℤ, d|n (d divides n) if $\exists q∈ℤ$ n = qd
 - $oldsymbol{d} d | n = n is a multiple of d = d is a divisor of n$

a.k.a. a factor

- @ e.g. Multiples(12) = { ..., -24, -12, 0, 12, 24, ... }.
- @ e.g. Divisors(12) = $\{\pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12\}$.
- Divisors(0) = \mathbb{Z} [∀d∈ \mathbb{Z} d|0]. Multiples(0) = {0} [∀n∈ \mathbb{Z} 0|n \leftrightarrow n=0]

Divisibility n = qm $\Rightarrow nn' = q'm$, where q'=qn'

Proposition: \forall m,n,n'∈ \mathbb{Z} if m|n, then m|nn'

n = qm & n' = q'm \Rightarrow n+n' = q'm, where q''=q+q'

Proposition: \forall m,n,n'∈ \mathbb{Z} if m|n and m|n', then m|(n+n')

n = qm & n' = q'n \Rightarrow n' = q"m, where q"=qq'

Proposition: \forall m,n,n'∈ \mathbb{Z} if m|n and n|n', then m|n'

nn' = qmn' & n'≠0 \Rightarrow n = qm

Proposition: \forall m,n,n'∈ \mathbb{Z} if mn'|nn' and n'≠0, then m|n

 $n = qm \& n\neq 0 \Rightarrow |n| = |q| \cdot |m|$ where $|q| \ge 1$ $\Rightarrow |n| = |m| + (|q|-1) \cdot |m| \ge |m|$

Proposition: ∀ m,n∈Z if m|n and n≠0, then |m| ≤ |n|

Quotient-Remainder Theorem

For any two integers m and n, m≠0, there is a <u>unique</u> quotient q and remainder r (integers), such that $n = q \cdot m + r$, $0 \le r < m$

Proof of existence

- We shall prove it for all $n \ge 0$ and m > 0. Then, the other cases can be proven using $|n| = q \cdot |m| + r$, $0 \le r < |m|$ Assuming r > 0.

 If r = 0, $n = \pm qm$

 - @ n < 0, m < 0: n = -|n| = -(q(-m)+r) = (q+1)m + (|m|-r). 0 ≤ |m|-r < |m|
- Fix any m>0. We use strong induction on n.
- Base cases: n ∈ [0,m). Then let q=0 and r=n : n = 0.m + n.
- Induction step: We shall prove that for all $k \ge m$, (induction hypothesis): if $\forall n \in \mathbb{Z}^+$ s.t. n < k, $\exists q, r$ s.t n = qm + r & $0 \le r < m$ (to prove): then $\exists q^*, r^*$ s.t. $k = q^* \cdot m + r^*$ & $0 \le r^* < m$.
- Consider k'=k-m. 0≤k'<k. By ind. hyp. k'=q'm+r'. Let q*=q'+1, r*=r'. □</p>

Quotient-Remainder Theorem

For any two integers m and n, m≠0, there is a <u>unique</u> quotient q and remainder r (integers), such that $n = q \cdot m + r$, $0 \le r < m$

Proof of existence

Also known as "Division Algorithm" (when you unroll the inductive argument, you get a (naïve) algorithm)

Proof of uniqueness:

- © Claim: if $n = q_1 \cdot m + r_1 = q_2 \cdot m + r_2$, where $0 \le r_1, r_2 < |m|$, then $q_1=q_2$ and $r_1=r_2$
 - Suppose, $q_1m + r_1 = q_2m + r_2$.

 - ## Then $(q_1-q_2)m = 0$. Since $m \neq 0$, $q_1=q_2$.

Quotient-Remainder Theorem

For any two integers m and n, m≠0, there is a <u>unique</u> quotient q and remainder r (integers), such that $n = q \cdot m + r, \quad 0 \le r < |m|$

-2		-14	-13	-12	-11	-10	-9	-8	
-1		-7	-6	-5	r	-3	-2	-1	m=7
0	q	о О	1 1	² 2	3	4 4	⁵ 5	6 6	
1		7	8	9	10	11_	12	13	e.g. n=11
2		14	15	16	17	18	19	20	q=1, r=4