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The Skippy Clock

Has 13 hours on its dial!

Needle moves two hours at a time

Which all numbers will the needle 
reach?

Reaches all of them!
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Definition: For n,d∈Z, d|n (d divides n) if ∃q∈Z  n = qd

d|n ≡ n is a multiple of d ≡ d is a divisor of n 

 
 

e.g.  Multiples(12) = { …, -24, -12, 0, 12, 24, … }.

e.g.    Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }.

Divisors(0) = Z  [∀d∈Z  d|0].  Multiples(0) = {0} [∀n∈Z  0|n ↔ n=0]

Divisibility

0 12 24-24 -12

-12 -2-3-4-6 -1 1 2 3 4 6 12

a.k.a. a factor



Common Factors
Common Divisor: m is a common divisor of integers a and b 
                    if m|a and m|b. [a.k.a. common factor]

Greatest Common Divisor ( for (a,b)≠(0,0) ) 
    gcd(a,b) = largest among common divisors of a and b

Well-defined: 1 is always a common factor. And, no common 
factor is larger than min(|a|,|b|) (unless a=0 or b=0; see below). 
Then, gcd(a,b) is an integer in the range [1, min(|a|,|b|)].

e.g.  Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }.  
      Divisors(18) = { ±1, ±2, ±3, ±6, ±9, ±18 }. 
      Common-divisors(12,18) = { ±1, ±2, ±3, ±6 }. gcd(12,18) = 6

e.g.  If a|b and (a,b)≠(0,0), then gcd(a,b)=|a|.   
      In particular, ∀a≠0  gcd(a,0) = |a|



d is a common factor of a & b, iff a d x d square tile can be 
used to perfectly tile an a x b rectangle

GCD as Tiling 
[Here all numbers are positive integers]

GCD: largest 
such square 

tile

12

8

4



Common Divisor: c is a common divisor of integers a and b 
                    if c|a and c|b. [a.k.a. common factor]

Greatest Common Divisor ( for (a,b)≠(0,0) ) 
    gcd(a,b) = largest among common divisors of a and b

∀a,b,n ∈ Z, common-divisors(a,b) = common-divisors(a,b+na)

i.e., (x|a ∧ x|b) ⟷ (x|a ∧ x|b+na). [Verify!]

Hence, ∀a,b,n ∈ Z, gcd(a,b) = gcd(a,b+na)

In particular, ∀a,b ∈ Z, gcd(a,b) = gcd(a,r), where b = aq+r 

and 0 ≤ r < a

Common Factors



Find the largest square perfectly tiling a x b rectangle 
 

Euclid’s GCD Algorithm 
[Here all numbers are positive integers]
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gcd(6,16)

10

 = gcd(6,10) 

common-divisors(a,b) = common-divisors(a,b-a) 
gcd(a,b) = gcd(a,b-a) 



16

 26 - 4  =6 - (16-2⋅6)  =3⋅6 - 1⋅16  =

Find the largest square perfectly tiling a x b rectangle 
 

Euclid’s GCD Algorithm 
[Here all numbers are positive integers]
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gcd(6,16) = gcd(2,4) = gcd(6,4)  = 2

gcd(a,b) = gcd(a,b-qa) 
common-divisors(a,b) = common-divisors(a,b-qa) 

∀ a,b ∈ Z  

∃ u,v ∈ Z 

gcd(a,b) = 
u⋅a + v⋅b



The Hoppy Bunny
A bunny is sitting on an infinite number line, at position 0 
 
 
 

The bunny has two hops — of lengths a and b, where a,b ∈ Z

Can hop to left or right (irrespective of the sign of a,b)

What all points can the bunny reach?

After u a-hops and v b-hops (u, v could be negative, indicating 
direction opposite a or b’s sign), bunny is at a⋅u + b⋅v

For any a,b ∈ Z, let L(a,b) be the set of all integer combinations 

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }



The One Dimensional Lattice

Proof: Fix any x ∈ L(a,b). Let x = au+bv for u,v∈Z.

Let g = gcd(a,b).  Then, can write a = gp, b = gq for p,q∈Z 

Then, x = gpu+gqv = g(pu+qv). Hence g | x

Claim 1: ∀x ∈ L(a,b)  gcd(a,b) | x

For any a,b ∈ Z, let L(a,b) be the set of all integer combinations 

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }



The One Dimensional Lattice

Proof: d be the least in L+(a,b) ≜ L(a,b) ∩ Z+.  [Well-Ordering]

Let d=au+bv [Def of L(a,b)] & a = dq+r, 0≤r<d. [Q-R Theorem]

r∉ L+(a,b) since r<d. But r=a-(au+bv)q ∈ L(a,b) ⇒ r=0. i.e., d|a.

Similarly d|b ⇒ d common divisor ⇒ d ≤ gcd(a,b) [Def of gcd]

But d∈L(a,b) ⇒ gcd(a,b) | d [Claim 1] ⇒ gcd(a,b) ≤ d [since d≠0]. 

So gcd(a,b) = d ∈ L(a,b)

Claim 2: gcd(a,b) ∈ L(a,b)

Claim 1: ∀x ∈ L(a,b)  gcd(a,b) | x

For any a,b ∈ Z, let L(a,b) be the set of all integer combinations 

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }



The One Dimensional Lattice

Proof: By Claim 1, x ∈ L(a,b) → g|x. 

Conversely, consider arbitrary x s.t. g|x. Say x = g·h

By Claim 2, g∈L(a,b). i.e., g = au + bv for some u,v ∈ Z

So x = g·h = a(uh) + b(vh) ∈ L(a,b).

Claim 1: ∀x ∈ L(a,b)  gcd(a,b) | x

Theorem: L(a,b) consists of exactly all the multiples of gcd(a,b) 
i.e., ∀x∈Z  x ∈ L(a,b) ↔ g|x, where g ≜ gcd(a,b).

Claim 2: gcd(a,b) ∈ L(a,b)

For any a,b ∈ Z, let L(a,b) be the set of all integer combinations 

of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }

Bézout’s Identity
∀ a,b ∈ Z  ∃ u,v ∈ Z  

gcd(a,b) = u⋅a + v⋅b


