

Numb3rs

GCD

The Skippy Clock

Has 13 hours on its dial!
Needle moves two hours at a time
Which all numbers will the needle reach?

@Reaches all of them!

Divisibility

• Definition: For $n,d \in \mathbb{Z}$, d|n (d divides n) if $\exists q \in \mathbb{Z}$ n = qdadh = n is a multiple of d = d is a divisor of n a.k.a. a factor 1234 12 6 0 -12 12 \odot e.g. Multiples(12) = { ..., -24, -12, 0, 12, 24, ... }. \oslash e.q. Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }. O Divisors(0) = \mathbb{Z} [∀d∈ \mathbb{Z} d|0]. Multiples(0) = {0} [∀n∈ \mathbb{Z} 0|n ↔ n=0]

Common Factors

Common Divisor: m is a common divisor of integers a and b if m|a and m|b. [a.k.a. common factor]

@Greatest Common Divisor (for (a,b)≠(0,0))
gcd(a,b) = largest among common divisors of a and b

Well-defined: 1 is always a common factor. And, no common factor is larger than min(|a|,|b|) (unless a=0 or b=0; see below). Then, gcd(a,b) is an integer in the range [1, min(|a|,|b|)].

Se.g. Divisors(12) = { ±1, ±2, ±3, ±4, ±6, ±12 }.
Divisors(18) = { ±1, ±2, ±3, ±6, ±9, ±18 }.
Common-divisors(12,18) = { ±1, ±2, ±3, ±6 }. gcd(12,18) = 6

@e.g. If a|b and (a,b)≠(0,0), then gcd(a,b)=|a|.
 In particular, $\forall a \neq 0$ gcd(a,0) = |a|

GCD as Tiling [Here all numbers are positive integers] If a d is a common factor of a & b, iff a d x d square tile can be used to perfectly tile an a x b rectangle

12

GCD: largest such square tile

8

Common Factors

Common Divisor: c is a common divisor of integers a and b if cla and clb. [a.k.a. common factor]

@Greatest Common Divisor (for (a,b)≠(0,0))
gcd(a,b) = largest among common divisors of a and b

@i.e., (x|a ∧ x|b) ↔ (x|a ∧ x|b+na). [Verify!]

→ Hence, $\forall a, b, n \in \mathbb{Z}$, gcd(a, b) = gcd(a, b+na)

In particular, $\forall a, b \in \mathbb{Z}$, gcd(a,b) = gcd(a,r), where b = aq+r
 and 0 ≤ r < a
 </p>

16

gcd(6,16)=gcd(6,10)

For any $a, b \in \mathbb{Z}$, let L(a,b) be the set of all integer combinations of a, b. i.e., L(a,b) = { $au+bv \mid u,v \in \mathbb{Z}$ }

The One Dimensional Lattice

For any a,b ∈ Z, let L(a,b) be the set of all integer combinations of a, b. i.e., L(a,b) = { au+bv | u,v ∈ Z }
Claim 1: ∀x ∈ L(a,b) gcd(a,b) | x
Proof: Fix any x ∈ L(a,b). Let x = au+bv for u,v∈Z.
Let g = gcd(a,b). Then, can write a = gp, b = gq for p,q∈Z
Then, x = gpu+gqv = g(pu+qv). Hence g | x

The One Dimensional Lattice

For any $a, b \in \mathbb{Z}$, let L(a,b) be the set of all integer combinations of a, b. i.e., $L(a,b) = \{au+bv \mid u,v \in \mathbb{Z}\}$ Ø Claim 1: $\forall x \in L(a,b)$ gcd(a,b) | x
 \bigcirc Claim 2: gcd(a,b) ∈ L(a,b) OPROOF: d be the least in L⁺(a,b) ≜ L(a,b) ∩ \mathbb{Z}^+ . [Well-Ordering] Let d=au+bv [Def of L(a,b)] & a = dq+r, O≤r<d. [Q-R Theorem]
</p> \mathscr{O} r \notin L⁺(a,b) since r<d. But r=a-(au+bv)q \in L(a,b) \Rightarrow r=0. i.e., d|a. Similarly d|b \Rightarrow d common divisor \Rightarrow d \leq gcd(a,b) [Def of gcd] ØBut d∈L(a,b) ⇒ gcd(a,b) | d [Claim 1] ⇒ gcd(a,b) ≤ d [since d≠0]. \bigcirc So qcd(a,b) = d \in L(a,b)

The One Dimensional Lattice

For any $a, b \in \mathbb{Z}$, let L(a,b) be the set of all integer combinations of a, b. i.e., L(a,b) = { $au+bv \mid u,v \in \mathbb{Z}$ }

Bézout's Identity $\forall a,b \in \mathbb{Z} \exists u,v \in \mathbb{Z}$ $gcd(a,b) = u \cdot a + v \cdot b$

Theorem: L(a,b) consists of exactly all the multiples of gcd(a,b)
i.e., ∀x∈ℤ x ∈ L(a,b) ↔ g|x, where g ≜ gcd(a,b).
Proof: By Claim 1, x ∈ L(a,b) → g|x.

Conversely, consider arbitrary x s.t. g|x. Say x = g·h